

Supplemental:
Complexity Theory Recap

CS103CS103

Winter 2025Winter 2025

Regular
Languages CFLs

All Languages

R RE

 All Languages

RERegular
Languages CFLs R

 Undecidable Languages

Regular
Languages CFLs R

Efficiently
Decidable

Languages

A Sample Problem

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Patience Sorting

34 11 9 7 13 5 6 1 12 2 8 0 10

4

3

11

9

7

13

5

6

1

12

2

8

0

10

Trace backwards from the top of the last
pile. The numbers you visit form one of the
longest increasing subsequences of your

original sequence.

Another Problem

E

A

F

C

D

B

To

From

Goal: Determine the
length of the shortest
path from F to A in

this graph.

Another Problem

E

A

F

C

D

B

To

From

Idea: Use BFS!

Goal: Determine the
length of the shortest
path from F to A in

this graph.

For Comparison
● Longest increasing

subsequence:
● Naive: O(n · 2n)
● Fast: O(n²)

● Shortest path
problem:
● Naive: O(n · n!)
● Fast: O(n + m).

The Cobham-Edmonds Thesis

A language L can be decided efficiently if
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

Why Polynomials?
● Polynomial time somewhat captures efficient

computation, but has a few edge cases.
● However, polynomials have very nice mathematical

properties:
● The sum of two polynomials is a polynomial. (Running one

efficient algorithm, then another, gives an efficient
algorithm.)

● The product of two polynomials is a polynomial. (Running
one efficient algorithm a “reasonable” number of times
gives an efficient algorithm.)

● The composition of two polynomials is a polynomial.
(Using the output of one efficient algorithm as the input to
another efficient algorithm gives an efficient algorithm.)

The Complexity Class P
● The complexity class P (for polynomial

time) contains all problems that can be
solved in polynomial time.

● Formally:
P = { L | There is a polynomial-time

decider for L }
● Assuming the Cobham-Edmonds thesis, a

language is in P if it can be decided
efficiently.

Examples of Problems in P
● All regular languages are in P.

● All have linear-time TMs.
● All CFLs are in P.

● Requires a more nuanced argument (the
CYK algorithm or Earley's algorithm).

● And a ton of other problems are in P as
well.
● Curious? Take CS161!

 Undecidable Languages

Regular
Languages CFLs R

Efficiently
Decidable

Languages

 Undecidable Languages

Regular
Languages CFLs RP

Verifiers – Again
2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

Does this Sudoku problem
have a solution?

Verifiers – Again

Is there an ascending subsequence of
length at least 5?

34 11 9 7 13 5 6 1 12 2 8 0 10

Verifiers – Again

Is there a path that goes through
every node exactly once?

1

2

5

4

6

3

Polynomial-Time Verifiers
● A polynomial-time verifier for L is a

TM V such that
● V halts on all inputs.
● w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V runs “efficiently” (its runtime is O(|w|k) for

some k ∈ ℕ).
● All strings in L have “short” certificates

(their lengths are O(|w|r) for some r ∈ ℕ).

The Complexity Class NP
● The complexity class NP (nondeterministic polynomial

time) contains all problems that can be verified in
polynomial time.

● Formally:
 NP = { L | There is a polynomial-time
 verifier for L }

● The name NP comes from another way of characterizing NP.
If you introduce nondeterministic Turing machines and
appropriately define “polynomial time,” then NP is the set of
problems that an NTM can solve in polynomial time.

● Useful fact: NP ⊊ R.
● Proof idea: If L ∈ NP, all strings in L have “short” certificates.

Therefore, we can just try all possible “short” certificates and see if
any of them work. (Showing NP is a strict subset of R requires
some more advanced techniques.)

 P = { L | there is a polynomial-time
 decider for L }

 NP = { L | there is a polynomial-time
verifier for L }

 R = { L | there is a polynomial-time
 decider for L }

 RE = { L | there is a polynomial-time
verifier for L }

P ≟ NP

 P = { L | There is a polynomial-time
 decider for L }

 NP = { L | There is a polynomial-time
 verifier for L }

P ⊆ NP

Polynomial-Time
Decider for L

yes!

no!

input string (w)

bool solveProblemL(string w) {

 do some work;
 return the answer;
}

 P = { L | There is a polynomial-time
 decider for L }

 NP = { L | There is a polynomial-time
 verifier for L }

Polynomial-Time
Verifier for L

yes!

no!

input string (w)

certificate (c)
(ignored)

bool solveProblemL(string w, string c) {
 /* don't even look at c */
 do some work;
 return the answer;
}

P ⊆ NP

P NP

Which Picture is Correct?

P NP

Which Picture is Correct?

A Problem
● The R and RE languages correspond to

problems that can be decided and verified,
period, without any time bounds.

● To reason about what's in R and what's in
RE, we used two key techniques:
● Universality: TMs can simulate other TMs.
● Self-Reference: TMs can get their own source

code.
● Why can't we just do that for P and NP?

Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P ≟ NP.

Proof: Take CS154!

 NP PREG

Problems in NP vary widely in their
difficulty, even if P = NP.

How can we rank the relative difficulties
of problems?

Maximum Matching
● Given an undirected graph G, a matching in G is a

set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A maximum
matching.

Solving Domino Tiling

Solving Domino Tiling

bool canPlaceDominoes(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}

DominoTiling ≤p MaximumMatching

●

We say that Domino Tiling is
polynomial-time reducible to
Maximum Matching

● Maximum Matching is at least as hard as
Domino Tiling.

Satisfiability
● A propositional logic formula φ is called

satisfiable if there is some assignment to its
variables that makes it evaluate to true.

● Which of the following formulas are satisfiable?
p ∧ q

p ∧ ¬p
p → (q ∧ ¬q)

● An assignment of true and false to the variables
of φ that makes it evaluate to true is called a
satisfying assignment.

SAT
● The boolean satisfiability problem (SAT) is the

following:
Given a propositional logic
formula φ, is φ satisfiable?

● Formally:
SAT = { ⟨φ⟩ | φ is a satisfiable PL formula }

● Finding good algorithms for SAT is an active area of
research for reasons we’ll discuss later today.

● We have some pretty decent algorithms for solving
SAT reasonably quickly most of the time.

● Given this, what other problems can we solve?

a c
b

dh

g e
f

 ¬(h ↔ b) ∧
 ¬(a ↔ c) ∧
 ¬(b ↔ d) ∧
 ¬(c ↔ e) ∧
 ¬(d ↔ f) ∧
 ¬(e ↔ g) ∧
 ¬(f ↔ h) ∧
 ¬(a ↔ g)

Observation 1: We never need
to press the same button twice.

Observation 4: A light that is
initially off stays off when an

even number of adjacent lights
are pressed.

Observation 5: A light that is
initially on ends off when an

odd number of adjacent lights
are pressed.

Observation 2: Button press
order doesn’t matter.

Observation 3: Our
propositional formula will have

one variable per button,
indicating whether we press it.

bool canTurnLightsOff(LightRing r) {

 return isSatisfiable(ringToFormula(r));

}

LightsOut ≤ p SAT

● We say that Lights Out is
polynomial-time reducible to SAT

● SAT is at least as hard as Lights Out.

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.
● If A ≤p B and B ∈ NP, then A ∈ NP.

P

Polynomial-Time Reductions

Polynomial-Time Reductions
● If A ≤p B and B ∈ P, then A ∈ P.
● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

Polynomial-Time Reductions
● If A ≤p B and B ∈ P, then A ∈ P.
● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

Polynomial-Time Reductions
● If A ≤p B and B ∈ P, then A ∈ P.
● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

For languages A and B, we say A ≤ₚ B if
A reduces to B in polynomial time.

(Intuitively: B is at least as hard as A.)

We say that a language L is NP-hard if
∀A ∈ NP. A ≤ₚ L.

(How hard is a problem that’s NP-hard?)

We say that a language L is NP-complete if
L ∈ NP and L is NP-hard.

(How hard is a problem that’s NP-complete?)

NP NP-hardNP-complete

LD

ATM
Hardest

problem in
NP

Tied for
hardest in

NP

P

Intuition: The NP-complete problems are
the hardest problems in NP.

If we can determine how hard those
problems are, it would tell us a lot about

the P ≟ NP question.

The Tantalizing Truth
Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■Intuition: This means the hardest

problems in NP aren’t actually that
hard. We can solve them in

polynomial time. So that means we
can solve all problems in NP in

polynomial time.

The Tantalizing Truth

 NP
P

NPC

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth

 NP
P

NPC

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth
Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

 NP
P

NPC

The Tantalizing Truth

 P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth

 P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem A. Since L is NP-complete, we know
that A ≤ₚ L. Since L ∈ P and A ≤ₚ L, we see that A ∈ P. Since
our choice of A was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth
Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■

Intuition: This means the hardest
problems in NP are so hard that

they can’t be solved in polynomial
time. So the hardest problems in NP

aren’t in P, meaning P ≠ NP.

The Tantalizing Truth

 NP

P
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■

How do we even know NP-complete
problems exist in the first place?

Theorem (Cook-Levin): SAT is NP-complete.

Proof Idea: To see that SAT ∈ NP, show how to
make a polynomial-time verifier for it. Key idea:
have the certificate be a satisfying assignment.

To show that SAT is NP-hard, given a
polymomial-time verifier V for an arbitrary NP
language L, for any string w you can construct a
polynomially-sized formula φ(w) that says “there
is a certificate c where V accepts ⟨w, c⟩.” This
formula is satisfiable if and only if w ∈ L, so
deciding whether the formula is satisfiable
decides whether w is in L. ■

Proof: Take CS154!

Why All This Matters
● Resolving P ≟ NP is equivalent to just

figuring out how hard SAT is.
SAT ∈ P ↔ P = NP

● We've turned a huge, abstract, theoretical
problem about solving problems versus
checking solutions into the concrete task of
seeing how hard one problem is.

● You can get a sense for how little we know
about algorithms and computation given
that we can't yet answer this question!

Why This Matters
● The following problems are known to be efficiently

verifiable, but have no known efficient solutions:
● Determining whether an electrical grid can be built to link up

some number of houses for some price (Steiner tree problem).
● Determining whether a simple DNA strand exists that multiple

gene sequences could be a part of (shortest common
supersequence).

● Determining the best way to assign hardware resources in a
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple
workers to minimize completion time (job scheduling).

● And many more.
● If P = NP, all of these problems have efficient solutions.
● If P ≠ NP, none of these problems have efficient solutions.

Why This Matters
● If P = NP:

● A huge number of seemingly difficult problems
could be solved efficiently.

● Our capacity to solve many problems will scale
well with the size of the problems we want to
solve.

● If P ≠ NP:
● Enormous computational power would be

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up

with our curiosity.

Sample NP-Hard Problems
● Computational biology: Given a set of genomes, what is the most

probable evolutionary tree that would give rise to those genomes?
(Maximum parsimony problem)

● Game theory: Given an arbitrary perfect-information, finite, two-player
game, who wins? (Generalized geography problem)

● Operations research: Given a set of jobs and workers who can
perform those tasks in parallel, can you complete all the jobs within
some time bound? (Job scheduling problem)

● Machine learning: Given a set of data, find the simplest way of
modeling the statistical patterns in that data. (Bayesian network
inference problem)

● Medicine: Given a group of people who need kidneys and a group of
kidney donors, find the maximum number of people who can receive
transplants. (Cycle cover problem)

● Systems: Given a set of processes and a number of processors, find the
optimal way to assign those tasks so that they complete as soon as
possible. (Processor scheduling problem)

Why All This Matters
● You will almost certainly encounter NP-hard

problems in practice – they're everywhere!
● If a problem is NP-hard, then there is no known

algorithm for that problem that
● is efficient on all inputs,
● always gives back the right answer, and
● runs deterministically.

● Useful intuition: If you need to solve an NP-hard
problem, you will either need to settle for an
approximate answer, an answer that's likely but not
necessarily right, or have to work on really small
inputs.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

