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A Sample Problem

Goal: Find the length of 
the longest increasing 
subsequence of this 

sequence.
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Patience Sorting
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Trace backwards from the top of the last 
pile. The numbers you visit form one of the 
longest increasing subsequences of your 

original sequence.



  

Another Problem

E

A

F

C

D

B

To   

From   

Goal: Determine the 
length of the shortest 
path from F to A in 

this graph.



  

Another Problem
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Idea: Use BFS!

Goal: Determine the 
length of the shortest 
path from F to A in 

this graph.



  

For Comparison
● Longest increasing 

subsequence:
● Naive: O(n · 2n)
● Fast: O(n²)

● Shortest path 
problem:
● Naive: O(n · n!)
● Fast: O(n + m).



  

The Cobham-Edmonds Thesis

A language L can be decided efficiently if
there is a TM that decides it in polynomial time.

 

Equivalently, L can be decided efficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
efficient computation, and it is 

somewhat controversial.



  

Why Polynomials?
● Polynomial time somewhat captures efficient 

computation, but has a few edge cases.
● However, polynomials have very nice mathematical 

properties:
● The sum of two polynomials is a polynomial. (Running one 

efficient algorithm, then another, gives an efficient 
algorithm.)

● The product of two polynomials is a polynomial. (Running 
one efficient algorithm a “reasonable” number of times 
gives an efficient algorithm.)

● The composition of two polynomials is a polynomial. 
(Using the output of one efficient algorithm as the input to 
another efficient algorithm gives an efficient algorithm.)



  

The Complexity Class P
● The complexity class P (for polynomial 

time) contains all problems that can be 
solved in polynomial time.

● Formally:
P = { L | There is a polynomial-time   

decider for L }      
● Assuming the Cobham-Edmonds thesis, a 

language is in P if it can be decided 
efficiently.



  

Examples of Problems in P
● All regular languages are in P.

● All have linear-time TMs.
● All CFLs are in P.

● Requires a more nuanced argument (the 
CYK algorithm or Earley's algorithm).

● And a ton of other problems are in P as 
well.
● Curious? Take CS161!
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Verifiers – Again
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Does this Sudoku problem 
have a solution?



  

Verifiers – Again

Is there an ascending subsequence of 
length at least 5?

34 11 9 7 13 5 6 1 12 2 8 0 10



  

Verifiers – Again

Is there a path that goes through 
every node exactly once?
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Polynomial-Time Verifiers
● A polynomial-time verifier for L is a 

TM V such that
● V halts on all inputs.
● w ∈ L    ↔    ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V runs “efficiently” (its runtime is O(|w|k) for 

some k ∈ ℕ).
● All strings in L have “short” certificates 

(their lengths are O(|w|r) for some r ∈ ℕ).



  

The Complexity Class NP
● The complexity class NP (nondeterministic polynomial 

time) contains all problems that can be verified in 
polynomial time.

● Formally:
             NP = { L | There is a polynomial-time 
                                 verifier for L }

● The name NP comes from another way of characterizing NP. 
If you introduce nondeterministic Turing machines and 
appropriately define “polynomial time,” then NP is the set of 
problems that an NTM can solve in polynomial time.

● Useful fact: NP  ⊊ R.
● Proof idea: If L ∈ NP, all strings in L have “short” certificates. 

Therefore, we can just try all possible “short” certificates and see if 
any of them work. (Showing NP is a strict subset of R requires 
some more advanced techniques.)



  

  P =   { L | there is a polynomial-time
 decider for L }

   NP =   { L | there is a polynomial-time
verifier for L }



  

  R =   { L | there is a polynomial-time
 decider for L }

   RE =   { L | there is a polynomial-time
verifier for L }



  

P  ≟ NP



  

     P = { L | There is a polynomial-time
                     decider for L }

     NP = { L | There is a polynomial-time
                        verifier for L }

P ⊆ NP

Polynomial-Time
Decider for L

yes!

no!

input string (w)     

bool solveProblemL(string w) {

    do some work;
    return the answer;
}



  

     P = { L | There is a polynomial-time
                     decider for L }

     NP = { L | There is a polynomial-time
                        verifier for L }

Polynomial-Time
Verifier for L

yes!

no!

input string (w)     

certificate (c)  
(ignored)

bool solveProblemL(string w, string c) {
    /* don't even look at c */
    do some work;
    return the answer;
}

P ⊆ NP



  

P NP

Which Picture is Correct?



  

P NP

Which Picture is Correct?



  

A Problem
● The R and RE languages correspond to 

problems that can be decided and verified, 
period, without any time bounds.

● To reason about what's in R and what's in 
RE, we used two key techniques:
● Universality: TMs can simulate other TMs.
● Self-Reference: TMs can get their own source 

code.
● Why can't we just do that for P and NP?



  

Theorem (Baker-Gill-Solovay): Any 
proof that purely relies on universality and 
self-reference cannot resolve P  ≟ NP.

Proof: Take CS154!



  

      NP        PREG

Problems in NP vary widely in their 
difficulty, even if P = NP.

 

How can we rank the relative difficulties 
of problems?



  

Maximum Matching
● Given an undirected graph G, a matching in G is a 

set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

A maximum 
matching.



  

Solving Domino Tiling



  

Solving Domino Tiling



  

bool canPlaceDominoes(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}

DominoTiling ≤p MaximumMatching 

●

We say that Domino Tiling is
polynomial-time reducible to
Maximum Matching

● Maximum Matching is at least as hard as
Domino Tiling.



  

Satisfiability
● A propositional logic formula φ is called 

satisfiable if there is some assignment to its 
variables that makes it evaluate to true.

● Which of the following formulas are satisfiable?
p ∧ q

p ∧ ¬p
p → (q ∧ ¬q)

● An assignment of true and false to the variables 
of φ that makes it evaluate to true is called a 
satisfying assignment.



  

SAT
● The boolean satisfiability problem (SAT) is the 

following:
Given a propositional logic
formula φ, is φ satisfiable?

● Formally:
SAT = { ⟨φ⟩ | φ is a satisfiable PL formula }

● Finding good algorithms for SAT is an active area of 
research for reasons we’ll discuss later today.

● We have some pretty decent algorithms for solving 
SAT reasonably quickly most of the time.

● Given this, what other problems can we solve?



  

a c
b

dh

g e
f

  ¬(h ↔ b) ∧
  ¬(a ↔ c) ∧
  ¬(b ↔ d) ∧
  ¬(c ↔ e) ∧
  ¬(d ↔ f) ∧
  ¬(e ↔ g) ∧
  ¬(f ↔ h) ∧
  ¬(a ↔ g) 

Observation 1: We never need 
to press the same button twice.

Observation 4: A light that is 
initially off stays off when an 

even number of adjacent lights 
are pressed.

Observation 5: A light that is 
initially on ends off when an

odd number of adjacent lights 
are pressed.

Observation 2: Button press 
order doesn’t matter.

Observation 3: Our 
propositional formula will have 

one variable per button, 
indicating whether we press it.



  

bool canTurnLightsOff(LightRing r) {

 return isSatisfiable(ringToFormula(r));

}

LightsOut ≤ p SAT 

● We say that Lights Out is
polynomial-time reducible to SAT

● SAT is at least as hard as Lights Out.



  

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions
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● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions



  

● If A ≤p B and B ∈ P, then A ∈ P.
● If A ≤p B and B ∈ NP, then A ∈ NP.

P

Polynomial-Time Reductions



  

Polynomial-Time Reductions
● If A ≤p B and B ∈ P, then A ∈ P.
● If A ≤p B and B ∈ NP, then A ∈ NP.

      NPP



  

Polynomial-Time Reductions
● If A ≤p B and B ∈ P, then A ∈ P.
● If A ≤p B and B ∈ NP, then A ∈ NP.

      NPP



  

Polynomial-Time Reductions
● If A ≤p B and B ∈ P, then A ∈ P.
● If A ≤p B and B ∈ NP, then A ∈ NP.

      NPP



  

For languages A and B, we say A ≤ₚ B if
A reduces to B in polynomial time.

(Intuitively: B is at least as hard as A.)
 

We say that a language L is NP-hard if
∀A ∈ NP. A ≤ₚ L.

(How hard is a problem that’s NP-hard?)
 

We say that a language L is NP-complete if
L ∈ NP and L is NP-hard.

(How hard is a problem that’s NP-complete?)

NP NP-hardNP-complete

LD

ATM
Hardest 

problem in 
NP

Tied for 
hardest in 

NP

P



  

Intuition: The NP-complete problems are 
the hardest problems in NP.

 

If we can determine how hard those 
problems are, it would tell us a lot about 

the P  ≟ NP question.



  

The Tantalizing Truth
Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■Intuition: This means the hardest 

problems in NP aren’t actually that 
hard. We can solve them in 

polynomial time. So that means we 
can solve all problems in NP in 

polynomial time.



  

The Tantalizing Truth

      NP
P

NPC 

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■
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The Tantalizing Truth

     P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■



  

The Tantalizing Truth

     P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem A. Since L is NP-complete, we know
that A ≤ₚ L. Since L ∈ P and A ≤ₚ L, we see that A ∈ P. Since
our choice of A was arbitrary, this means that NP ⊆ P, so
P = NP. ■



  

The Tantalizing Truth
Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■

Intuition: This means the hardest 
problems in NP are so hard that 

they can’t be solved in polynomial 
time. So the hardest problems in NP 

aren’t in P, meaning P ≠ NP.



  

The Tantalizing Truth

      NP

P 
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■



  

How do we even know NP-complete
problems exist in the first place?



  

Theorem (Cook-Levin): SAT is NP-complete.

Proof Idea: To see that SAT ∈ NP, show how to 
make a polynomial-time verifier for it. Key idea: 
have the certificate be a satisfying assignment.

To show that SAT is NP-hard, given a 
polymomial-time verifier V for an arbitrary NP 
language L, for any string w you can construct a 
polynomially-sized formula φ(w) that says “there 
is a certificate c where V accepts ⟨w, c⟩.” This 
formula is satisfiable if and only if w ∈ L, so 
deciding whether the formula is satisfiable 
decides whether w is in L. ■

Proof: Take CS154!



  

Why All This Matters
● Resolving P   ≟ NP is equivalent to just 

figuring out how hard SAT is.
SAT ∈ P    ↔    P = NP

● We've turned a huge, abstract, theoretical 
problem about solving problems versus 
checking solutions into the concrete task of 
seeing how hard one problem is.

● You can get a sense for how little we know 
about algorithms and computation given 
that we can't yet answer this question!



  

Why This Matters
● The following problems are known to be efficiently 

verifiable, but have no known efficient solutions:
● Determining whether an electrical grid can be built to link up 

some number of houses for some price (Steiner tree problem).
● Determining whether a simple DNA strand exists that multiple 

gene sequences could be a part of (shortest common 
supersequence).

● Determining the best way to assign hardware resources in a 
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple 
workers to minimize completion time (job scheduling).

● And many more.
● If P = NP, all of these problems have efficient solutions.
● If P ≠ NP, none of these problems have efficient solutions.



  

Why This Matters
● If P = NP:

● A huge number of seemingly difficult problems 
could be solved efficiently.

● Our capacity to solve many problems will scale 
well with the size of the problems we want to 
solve.

● If P ≠ NP:
● Enormous computational power would be 

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up 

with our curiosity.



  

Sample NP-Hard Problems
● Computational biology: Given a set of genomes, what is the most 

probable evolutionary tree that would give rise to those genomes? 
(Maximum parsimony problem)

● Game theory: Given an arbitrary perfect-information, finite, two-player 
game, who wins? (Generalized geography problem)

● Operations research: Given a set of jobs and workers who can 
perform those tasks in parallel, can you complete all the jobs within 
some time bound? (Job scheduling problem)

● Machine learning: Given a set of data, find the simplest way of 
modeling the statistical patterns in that data. (Bayesian network 
inference problem)

● Medicine: Given a group of people who need kidneys and a group of 
kidney donors, find the maximum number of people who can receive 
transplants. (Cycle cover problem)

● Systems: Given a set of processes and a number of processors, find the 
optimal way to assign those tasks so that they complete as soon as 
possible. (Processor scheduling problem)



  

Why All This Matters
● You will almost certainly encounter NP-hard 

problems in practice – they're everywhere!
● If a problem is NP-hard, then there is no known 

algorithm for that problem that
● is efficient on all inputs,
● always gives back the right answer, and
● runs deterministically.

● Useful intuition: If you need to solve an NP-hard 
problem, you will either need to settle for an 
approximate answer, an answer that's likely but not 
necessarily right, or have to work on really small 
inputs.
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