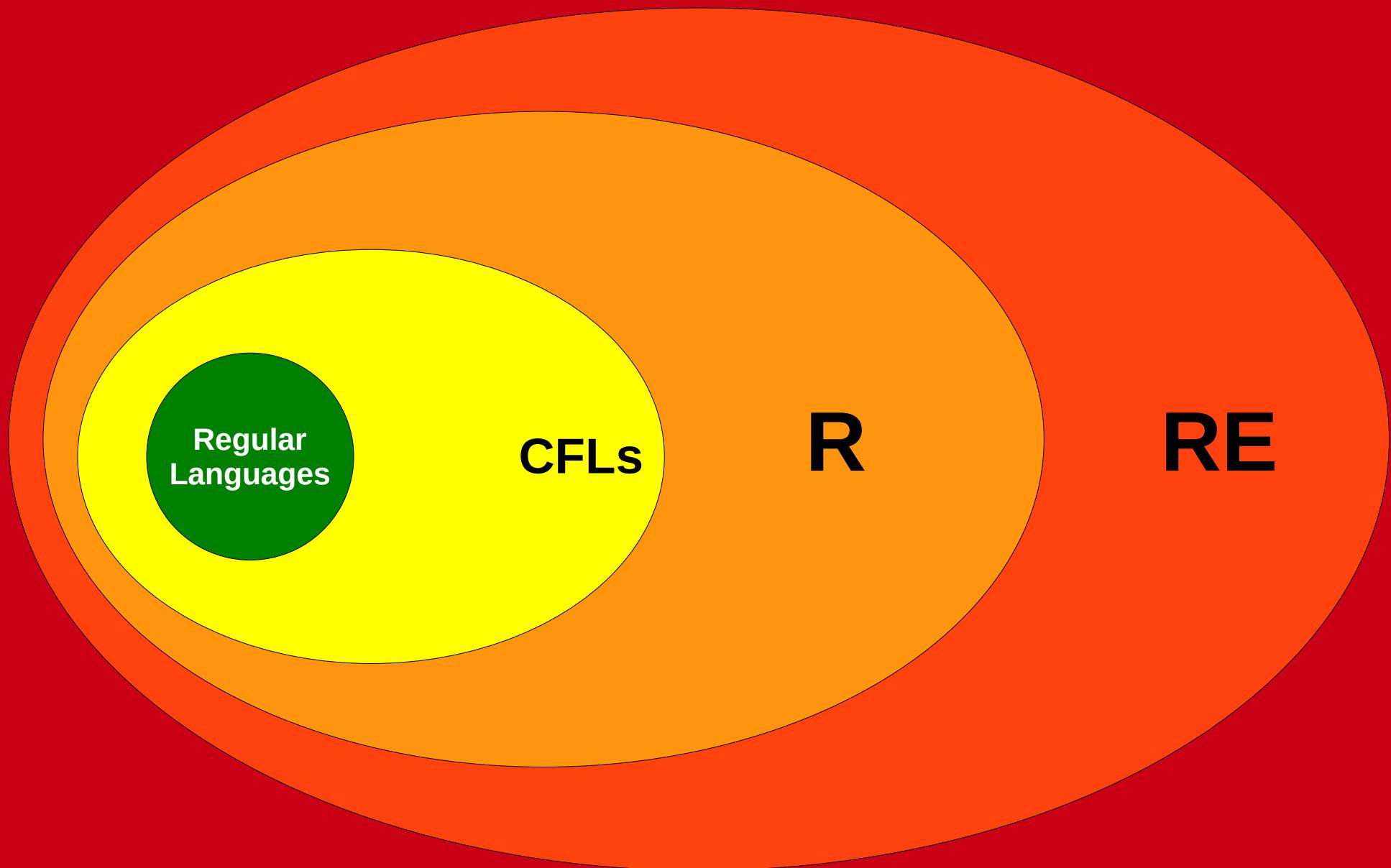
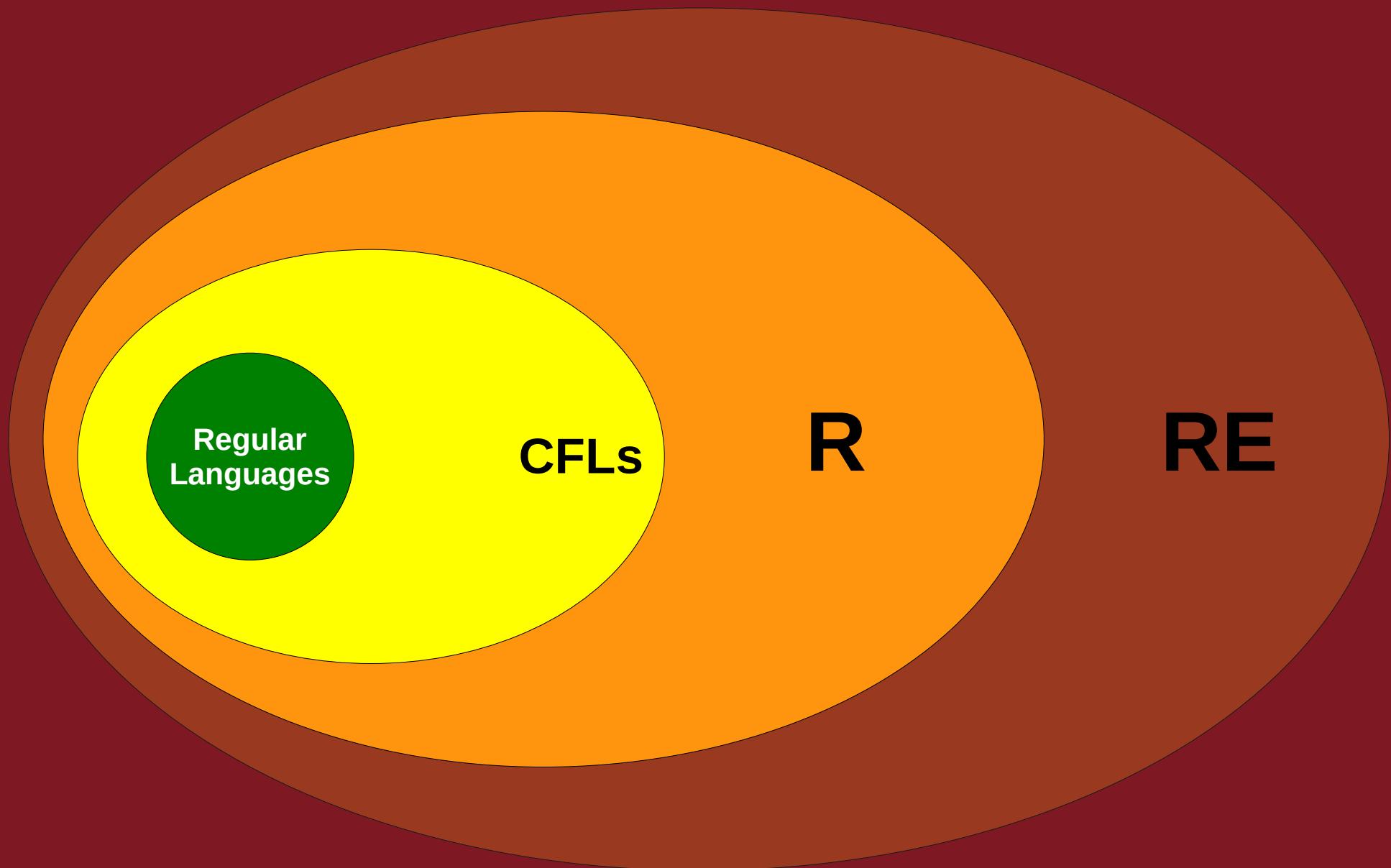


CS103
WINTER 2025

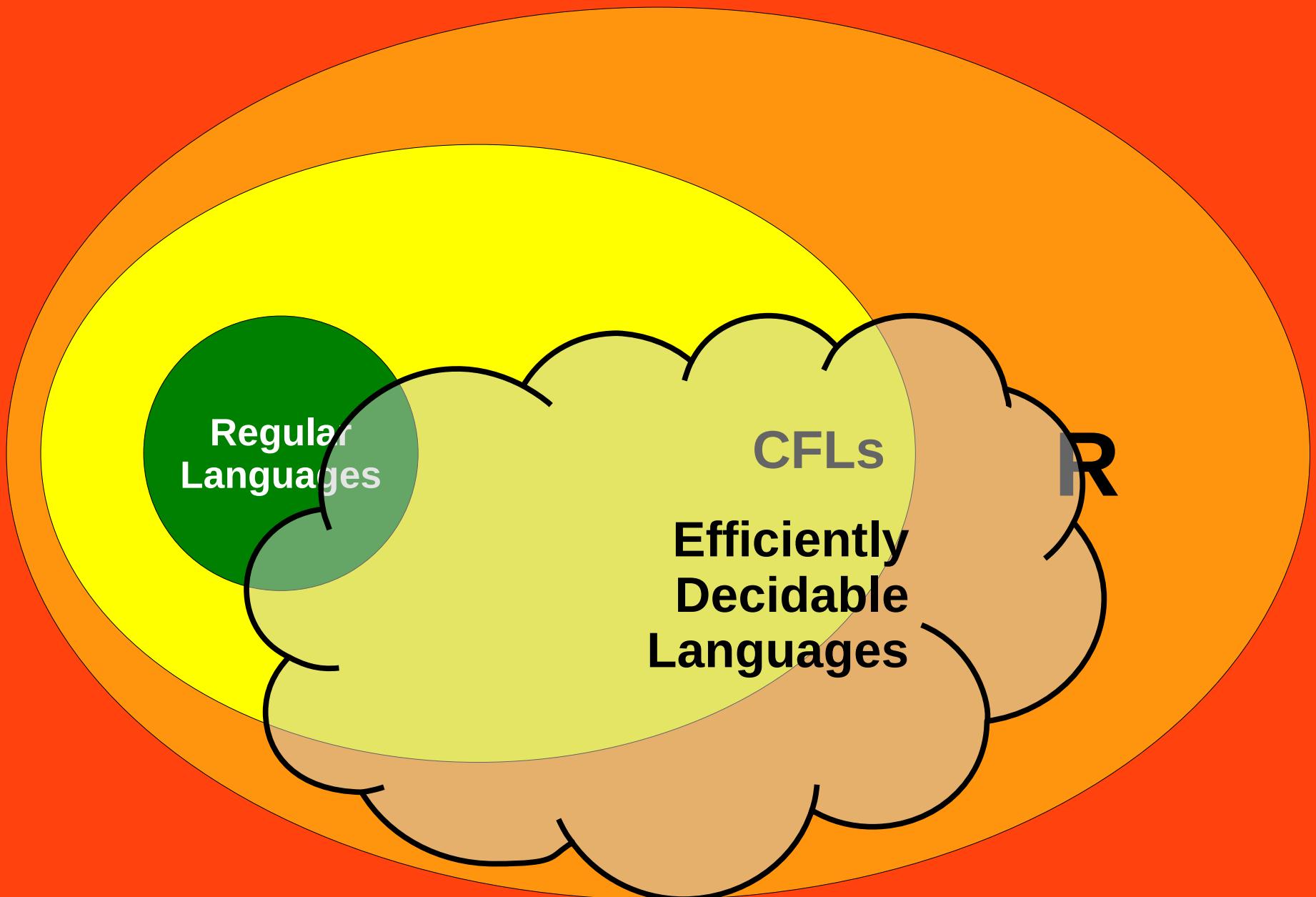
Supplemental: **Complexity Theory Recap**



All Languages



All Languages



Undecidable Languages

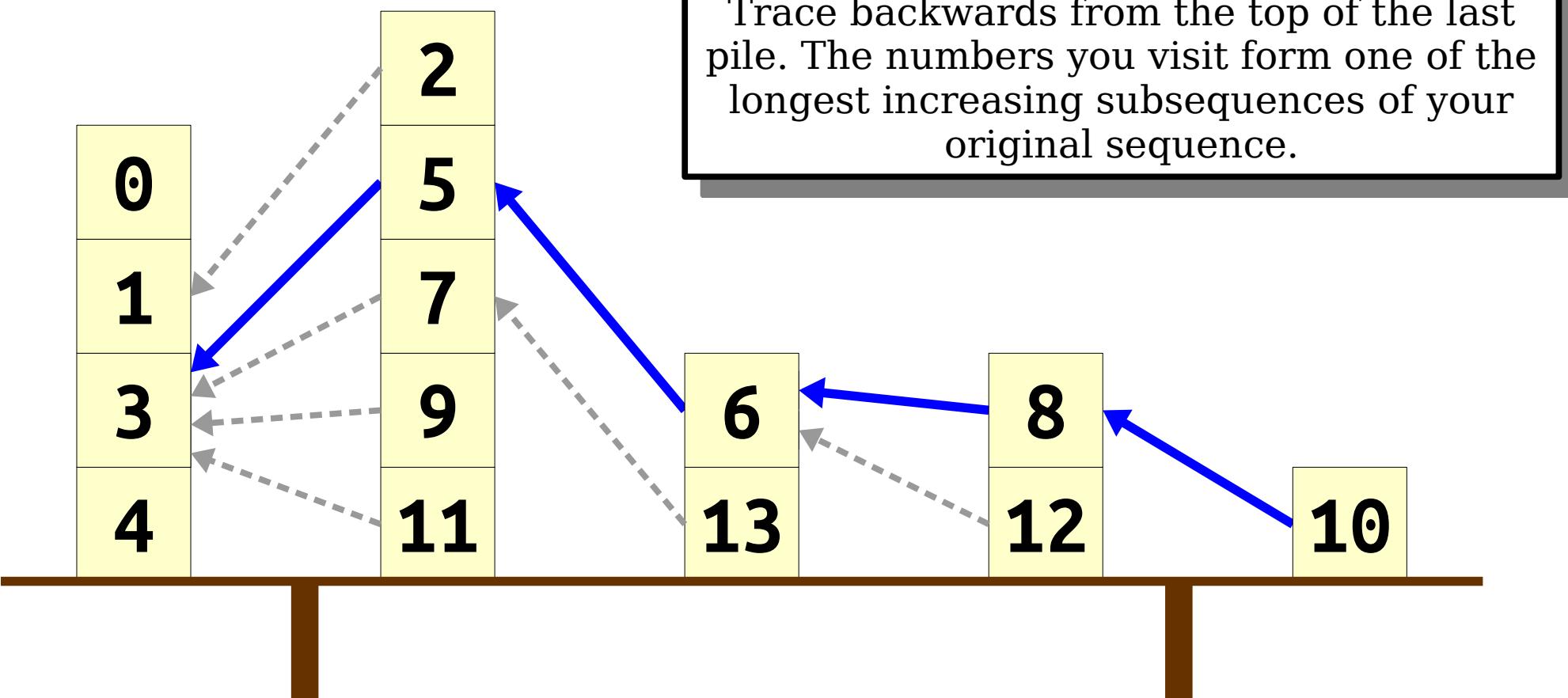
A Sample Problem

4	3	11	9	7	13	5	6	1	12	2	8	0	10
---	---	----	---	---	----	---	---	---	----	---	---	---	----

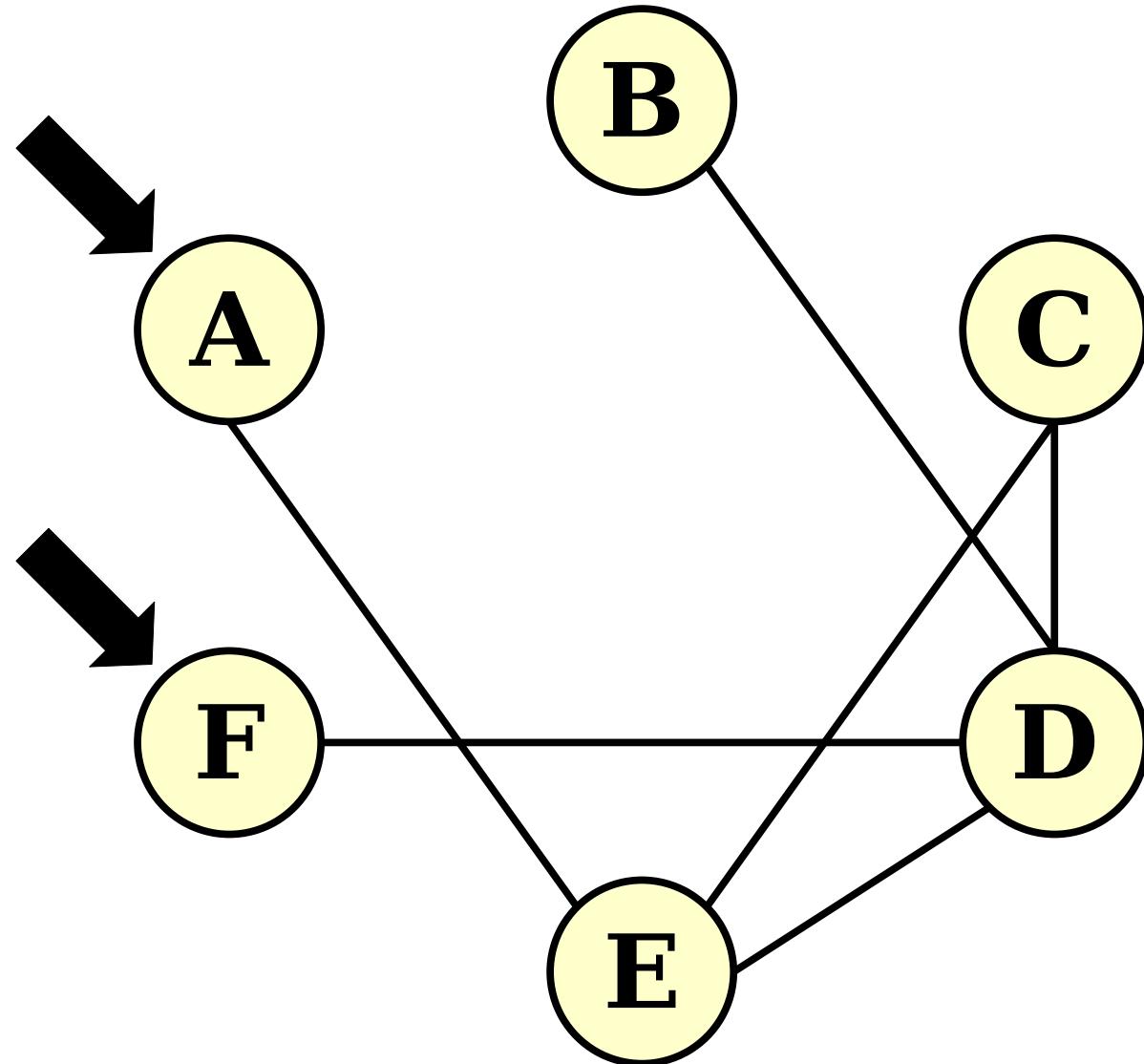
Goal: Find the length of the longest increasing subsequence of this sequence.

Patience Sorting

4	3	11	9	7	13	5	6	1	12	2	8	0	10
---	---	----	---	---	----	---	---	---	----	---	---	---	----

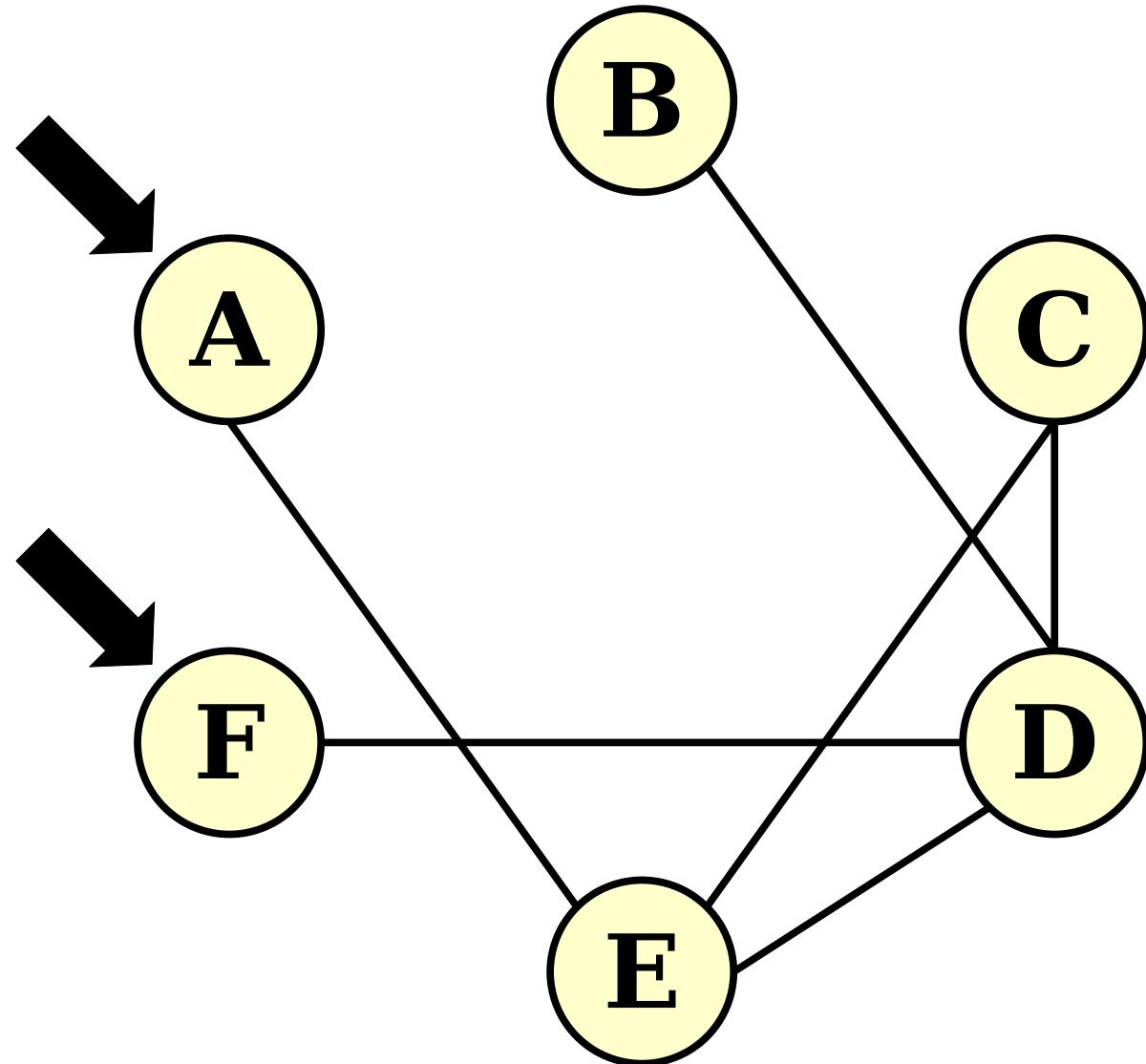


Another Problem



Goal: Determine the length of the shortest path from **F** to **A** in this graph.

Another Problem



Goal: Determine the length of the shortest path from **F** to **A** in this graph.

Idea: Use BFS!

For Comparison

- ***Longest increasing subsequence:***
 - Naive: $O(n \cdot 2^n)$
 - Fast: $O(n^2)$
- ***Shortest path problem:***
 - Naive: $O(n \cdot n!)$
 - Fast: $O(n + m)$.

The Cobham-Edmonds Thesis

A language L can be ***decided efficiently*** if there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently if it can be decided in time $O(n^k)$ for some $k \in \mathbb{N}$.

Like the Church-Turing thesis, this is ***not*** a theorem!

It's an assumption about the nature of efficient computation, and it is somewhat controversial.

Why Polynomials?

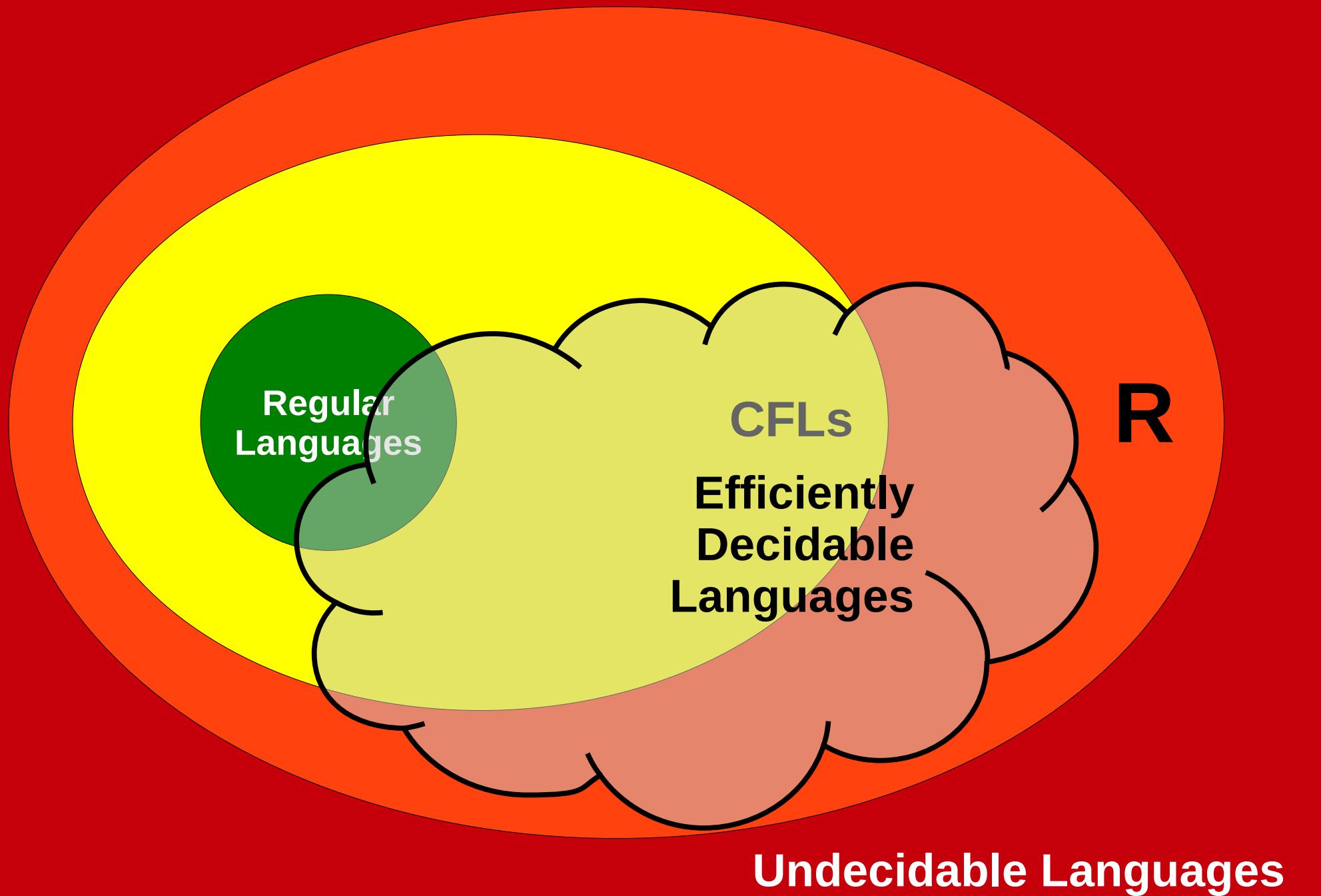
- Polynomial time *somewhat* captures efficient computation, but has a few edge cases.
- However, polynomials have very nice mathematical properties:
 - The sum of two polynomials is a polynomial. (Running one efficient algorithm, then another, gives an efficient algorithm.)
 - The product of two polynomials is a polynomial. (Running one efficient algorithm a “reasonable” number of times gives an efficient algorithm.)
 - The *composition* of two polynomials is a polynomial. (Using the output of one efficient algorithm as the input to another efficient algorithm gives an efficient algorithm.)

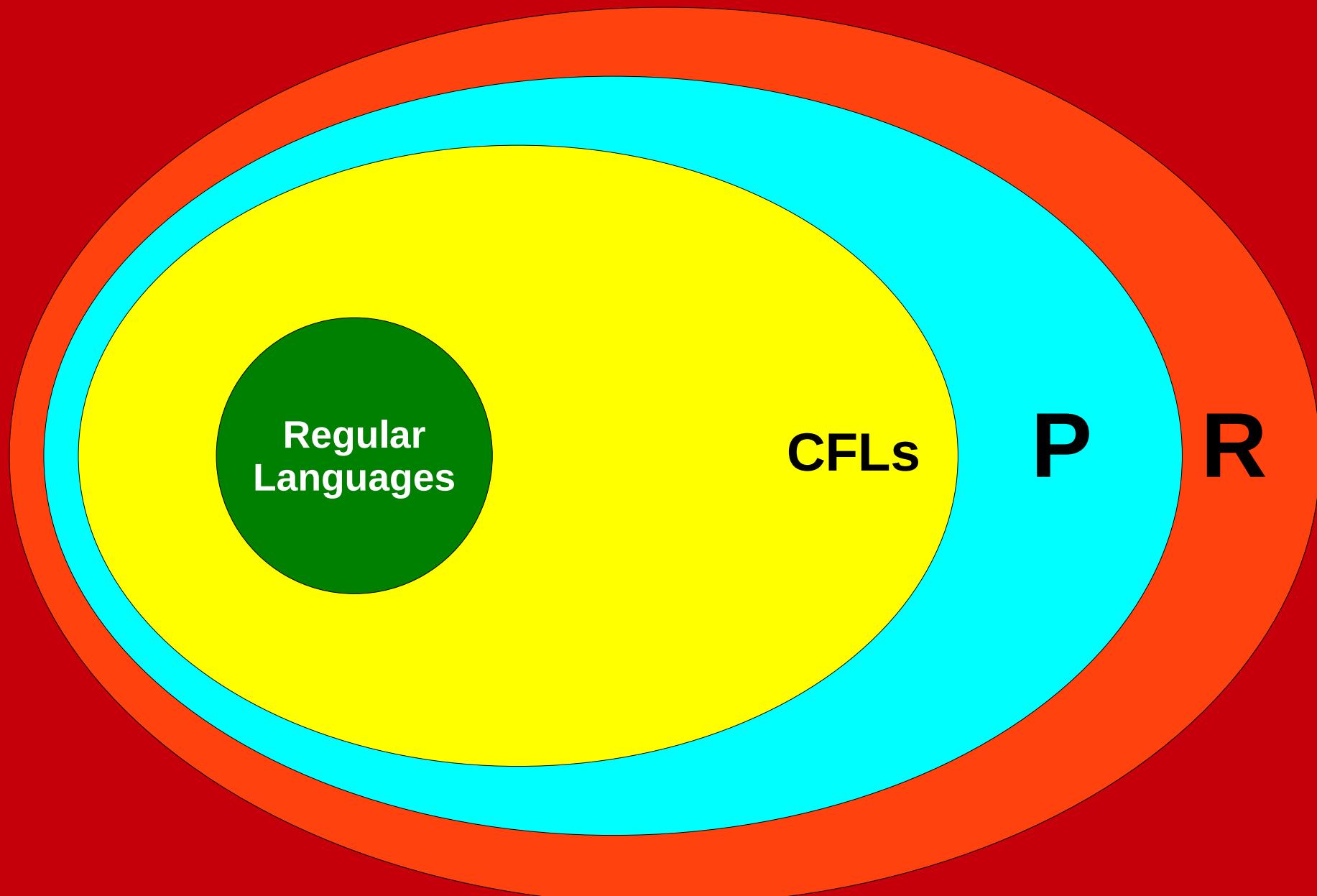
The Complexity Class **P**

- The **complexity class P** (for **polynomial** time) contains all problems that can be solved in polynomial time.
- Formally:
$$\mathbf{P} = \{ L \mid \text{There is a polynomial-time decider for } L \}$$
- Assuming the Cobham-Edmonds thesis, a language is in **P** if it can be decided efficiently.

Examples of Problems in **P**

- All regular languages are in **P**.
 - All have linear-time TMs.
- All CFLs are in **P**.
 - Requires a more nuanced argument (the *CYK algorithm* or *Earley's algorithm*).
- And a *ton* of other problems are in **P** as well.
 - Curious? Take CS161!





Undecidable Languages

Verifiers - Again

2	5	7	9	6	4	1	8	3
4	9	1	8	7	3	6	5	2
3	8	6	1	2	5	9	4	7
6	4	5	7	3	2	8	1	9
7	1	9	5	4	8	3	2	6
8	3	2	6	1	9	5	7	4
1	6	3	2	5	7	4	9	8
5	7	8	4	9	6	2	3	1
9	2	4	3	8	1	7	6	5

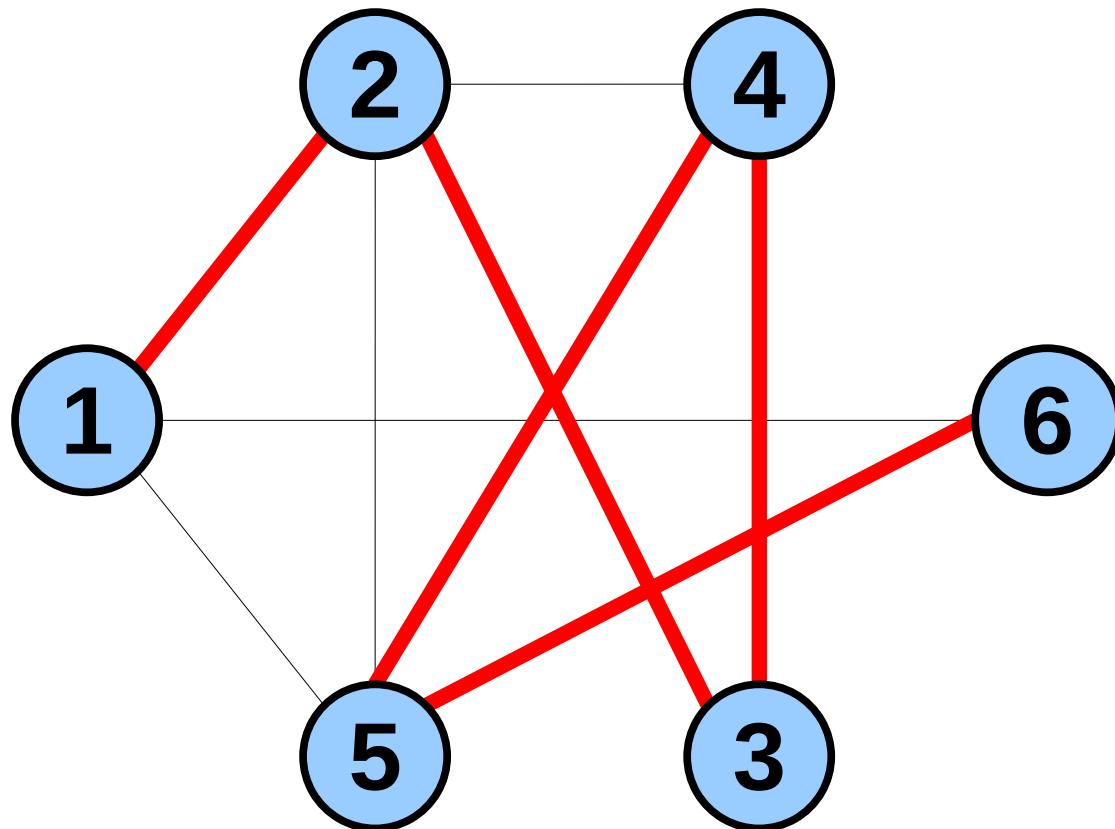
Does this Sudoku problem
have a solution?

Verifiers - Again

4	3	11	9	7	13	5	6	1	12	2	8	0	10
---	---	----	---	---	----	---	---	---	----	---	---	---	----

Is there an ascending subsequence of length at least 5?

Verifiers - Again



Is there a path that goes through
every node exactly once?

Polynomial-Time Verifiers

- A ***polynomial-time verifier*** for L is a TM V such that
 - V halts on all inputs.
 - $w \in L \leftrightarrow \exists c \in \Sigma^*. V \text{ accepts } \langle w, c \rangle$.
 - V runs “efficiently” (its runtime is $O(|w|^k)$ for some $k \in \mathbb{N}$).
 - All strings in L have “short” certificates (their lengths are $O(|w|^r)$ for some $r \in \mathbb{N}$).

The Complexity Class **NP**

- The complexity class **NP** (*nondeterministic polynomial time*) contains all problems that can be verified in polynomial time.
- Formally:
$$\mathbf{NP} = \{ L \mid \text{There is a polynomial-time verifier for } L \}$$
- The name **NP** comes from another way of characterizing **NP**. If you introduce *nondeterministic Turing machines* and appropriately define “polynomial time,” then **NP** is the set of problems that an NTM can solve in polynomial time.
- **Useful fact:** $\mathbf{NP} \subsetneq \mathbf{R}$.
 - **Proof idea:** If $L \in \mathbf{NP}$, all strings in L have “short” certificates. Therefore, we can just try all possible “short” certificates and see if any of them work. (Showing **NP** is a strict subset of **R** requires some more advanced techniques.)

P = { L | there is a polynomial-time decider for L }

NP = { L | there is a polynomial-time verifier for L }

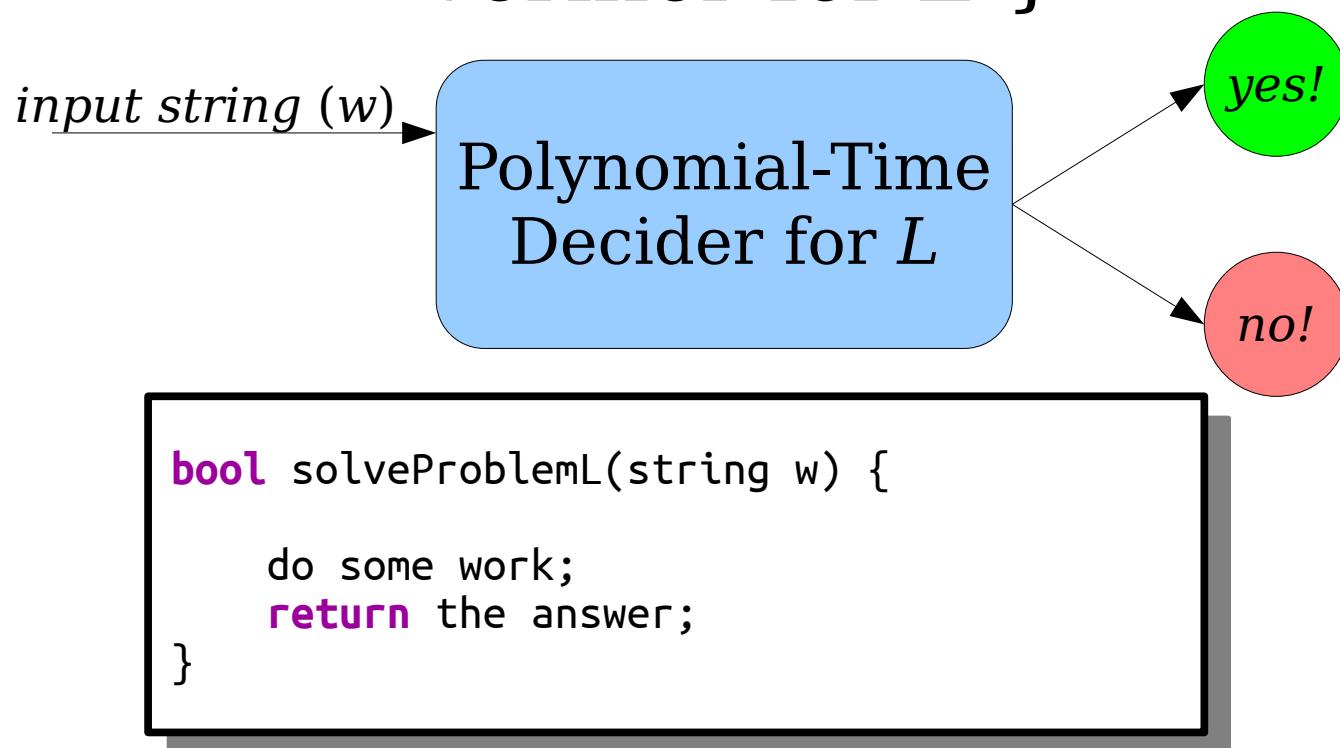
R = { L | there is a ~~polynomial-time~~ decider for L }

RE = { L | there is a ~~polynomial-time~~ verifier for L }

P $\stackrel{?}{=}$ NP

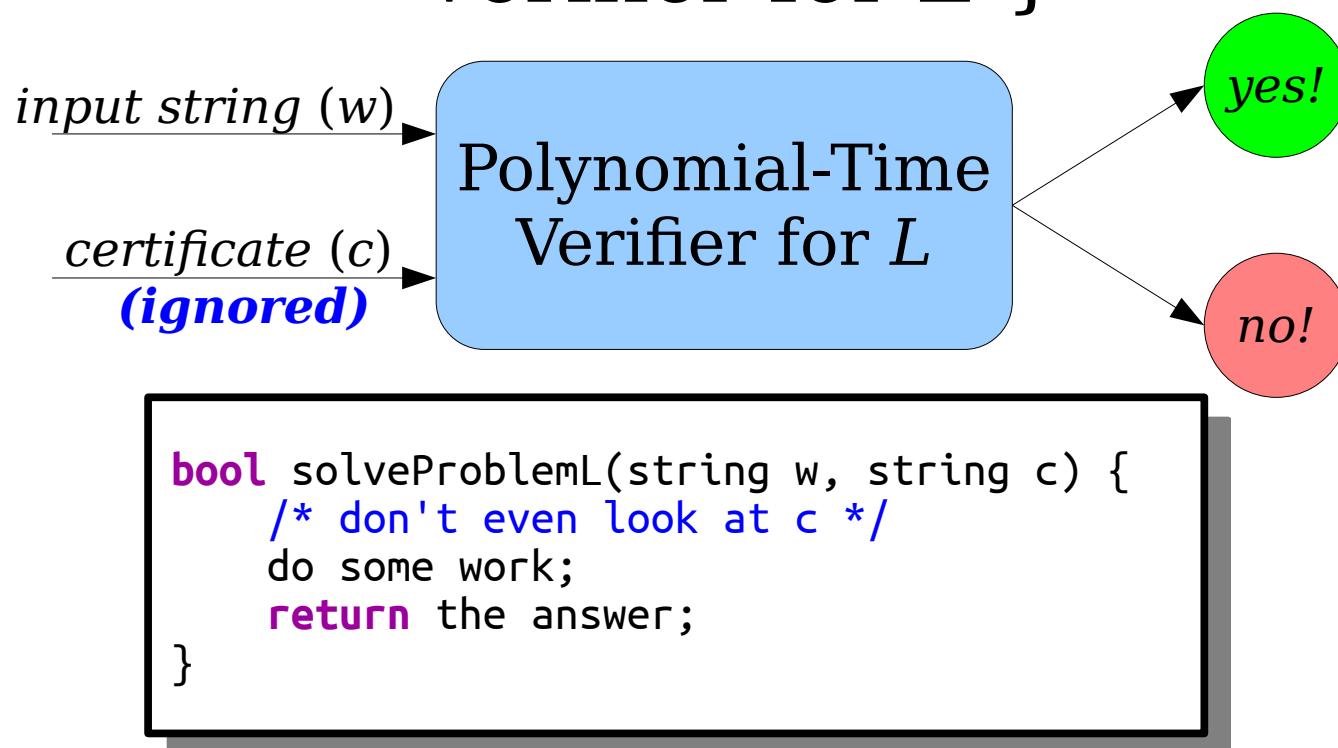
P = { L | There is a polynomial-time decider for L }

NP = { L | There is a polynomial-time verifier for L }



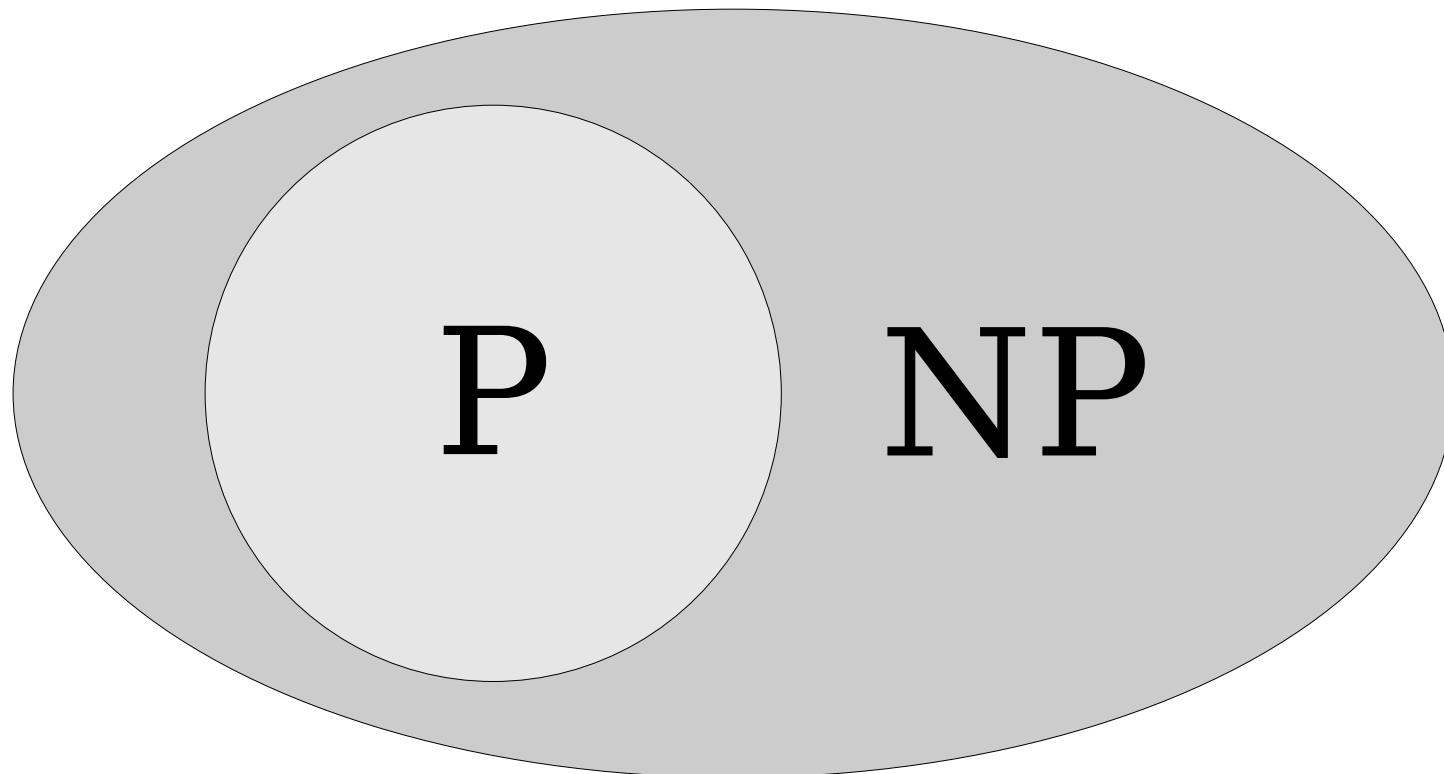
P = { L | There is a polynomial-time decider for L }

NP = { L | There is a polynomial-time verifier for L }

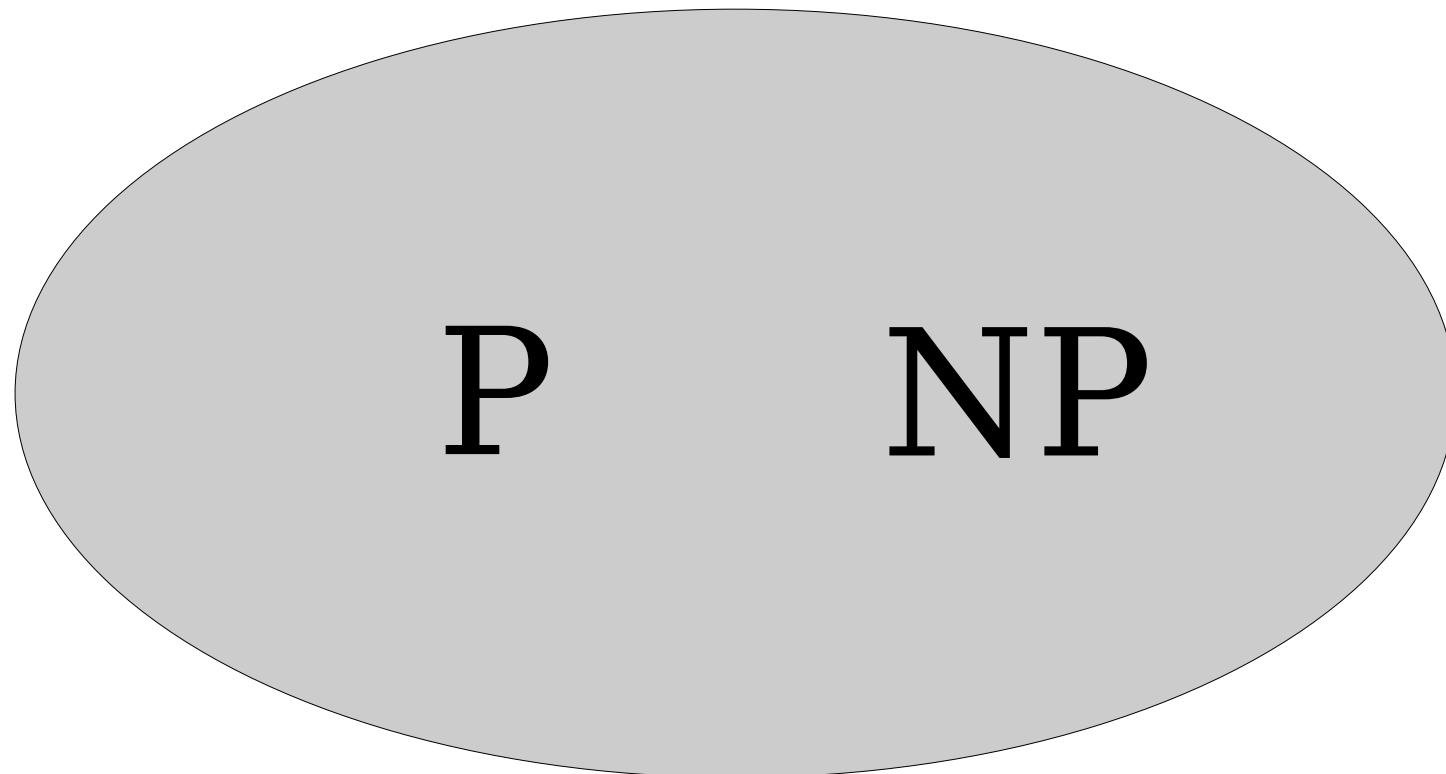


P \subseteq **NP**

Which Picture is Correct?



Which Picture is Correct?

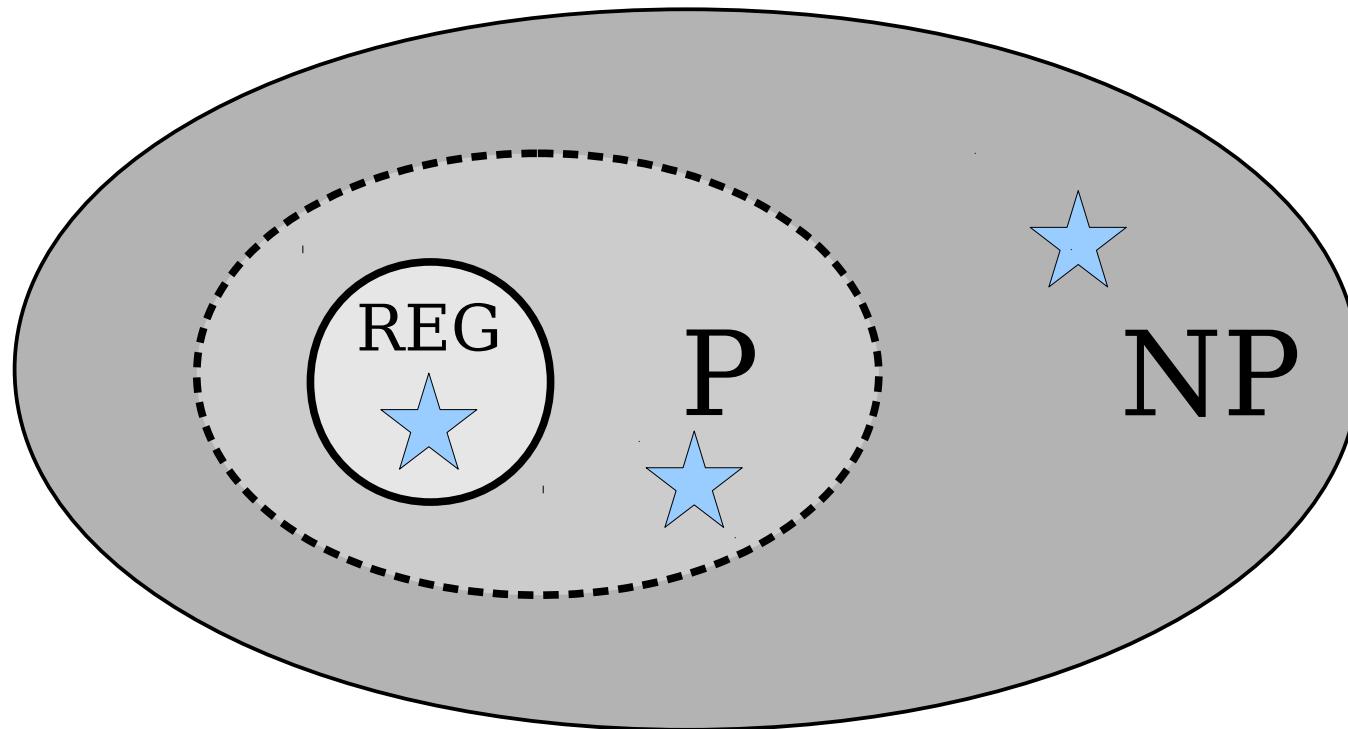


A Problem

- The **R** and **RE** languages correspond to problems that can be decided and verified, *period*, without any time bounds.
- To reason about what's in **R** and what's in **RE**, we used two key techniques:
 - **Universality**: TMs can simulate other TMs.
 - **Self-Reference**: TMs can get their own source code.
- Why can't we just do that for **P** and **NP**?

Theorem (Baker-Gill-Solovay): Any proof that purely relies on universality and self-reference cannot resolve $\mathbf{P} \stackrel{?}{=} \mathbf{NP}$.

Proof: Take CS154!

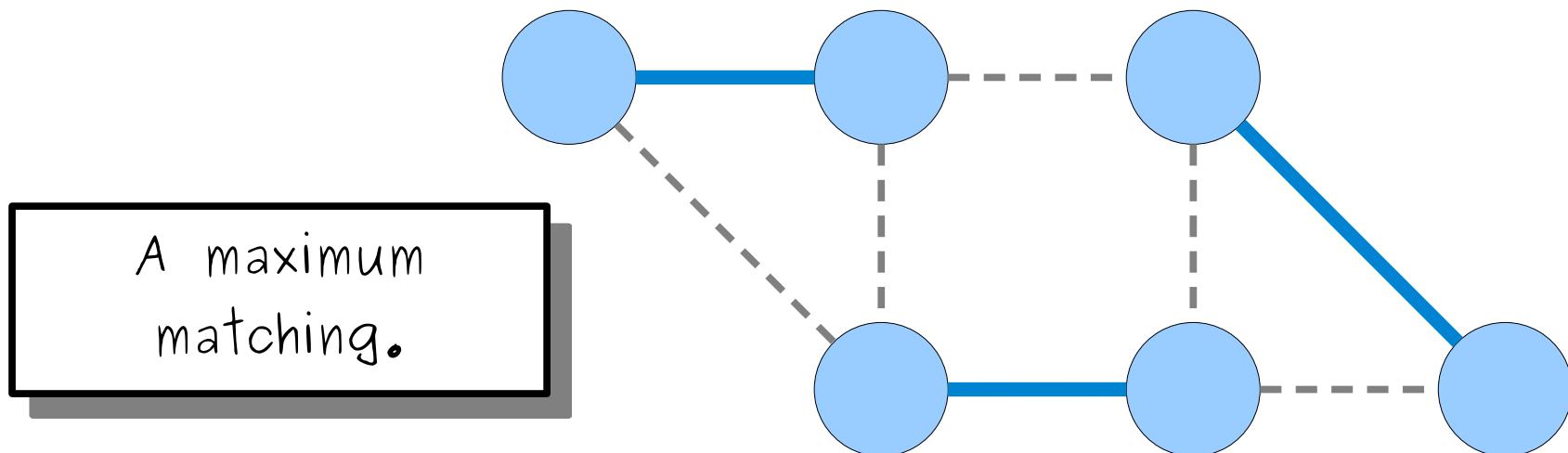


Problems in **NP** vary widely in their difficulty, even if **P** = **NP**.

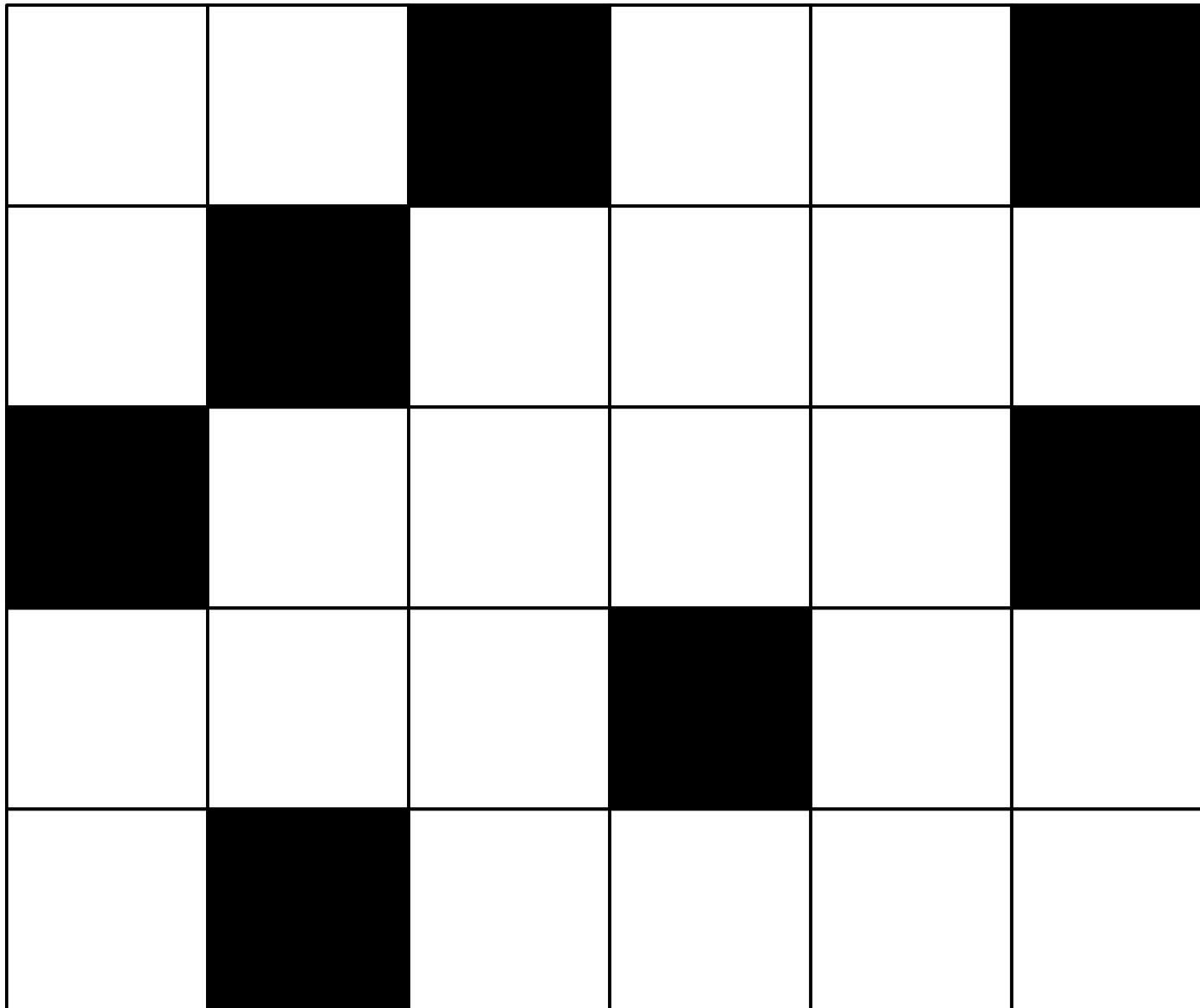
How can we rank the relative difficulties of problems?

Maximum Matching

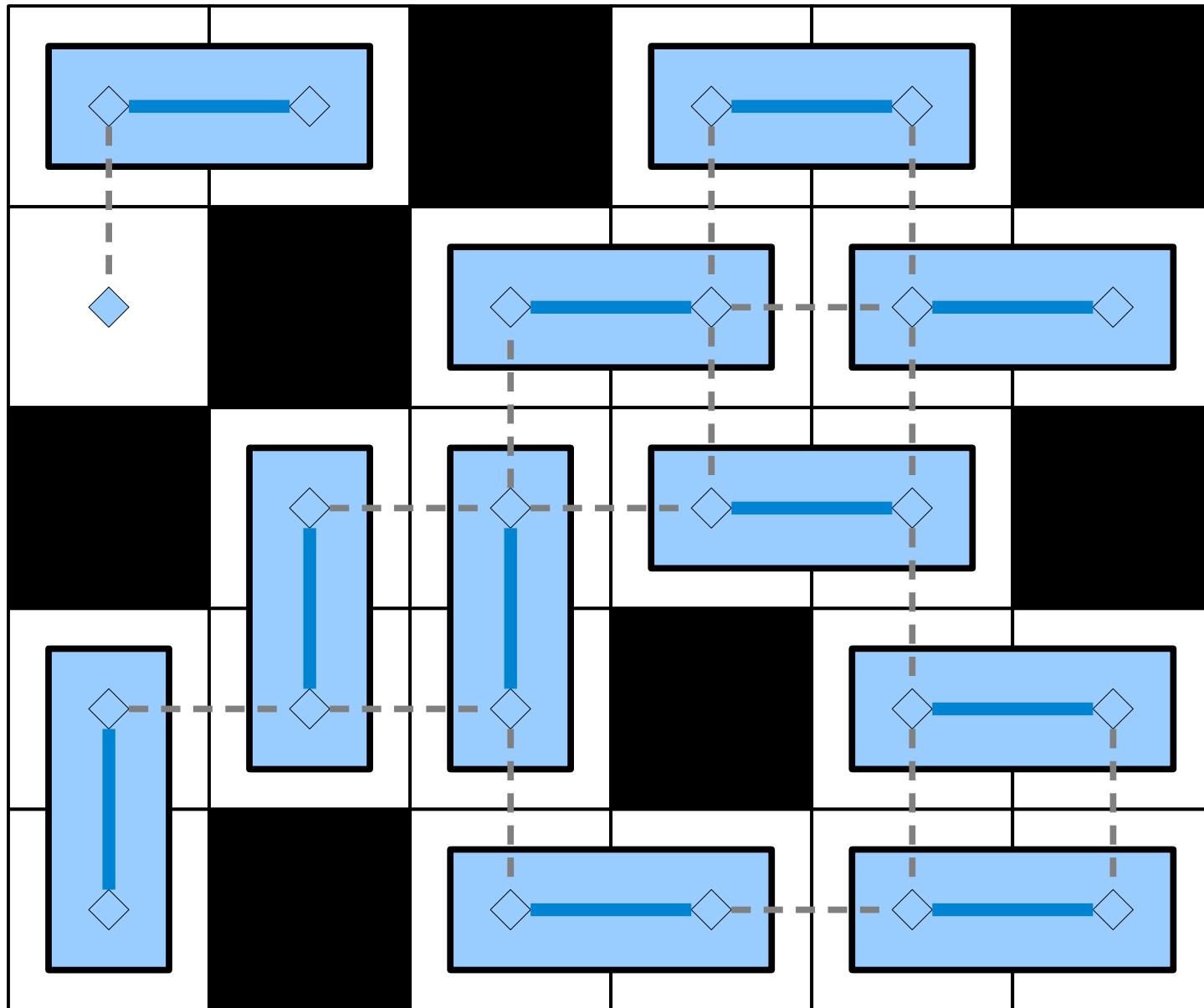
- Given an undirected graph G , a ***matching*** in G is a set of edges such that no two edges share an endpoint.
- A ***maximum matching*** is a matching with the largest number of edges.



Solving Domino Tiling



Solving Domino Tiling



```
bool canPlaceDominoes(Grid G, int k) {  
    return hasMatching(gridToGraph(G), k);  
}
```

DominoTiling \leq_p *MaximumMatching*

- We say that ***Domino Tiling is polynomial-time reducible to Maximum Matching***
- Maximum Matching is at least as hard as Domino Tiling.

Satisfiability

- A propositional logic formula φ is called **satisfiable** if there is some assignment to its variables that makes it evaluate to true.
- Which of the following formulas are satisfiable?

$$p \wedge q$$

$$p \wedge \neg p$$

$$p \rightarrow (q \wedge \neg q)$$

- An assignment of true and false to the variables of φ that makes it evaluate to true is called a **satisfying assignment**.

SAT

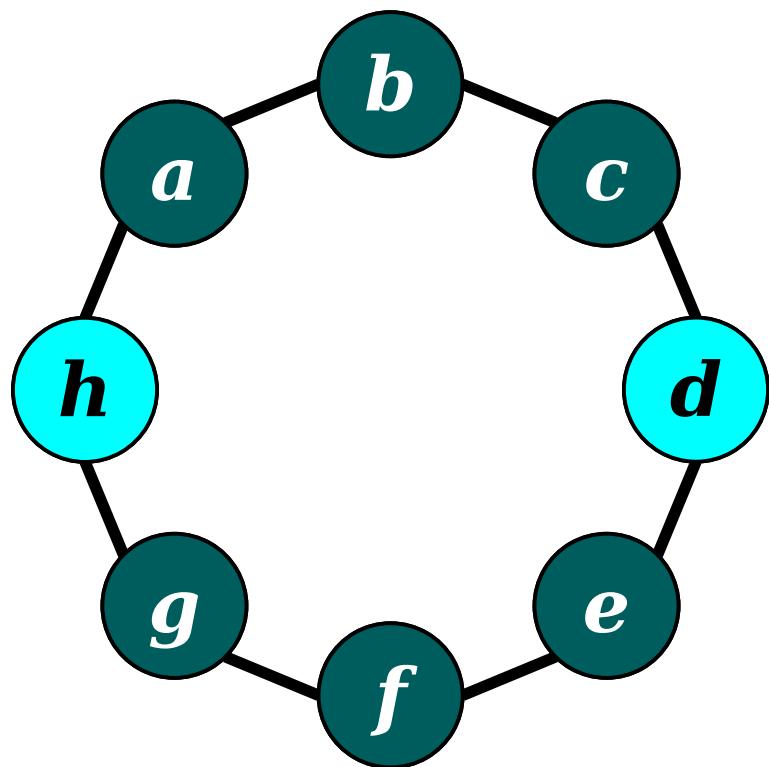
- The **boolean satisfiability problem (SAT)** is the following:

Given a propositional logic formula φ , is φ satisfiable?

- Formally:

$SAT = \{ \langle \varphi \rangle \mid \varphi \text{ is a satisfiable PL formula} \}$

- Finding good algorithms for SAT is an active area of research for reasons we'll discuss later today.
- We have some pretty decent algorithms for solving SAT reasonably quickly most of the time.
- Given this, what other problems can we solve?



$$\begin{aligned}
 (h \leftrightarrow b) \wedge \\
 (a \leftrightarrow c) \wedge \\
 (b \leftrightarrow d) \wedge \\
 \neg(c \leftrightarrow e) \wedge \\
 (d \leftrightarrow f) \wedge \\
 (e \leftrightarrow g) \wedge \\
 (f \leftrightarrow h) \wedge \\
 \neg(a \leftrightarrow g)
 \end{aligned}$$

Observation 1: We never need to press the same button twice.

Observation 2: Button press order doesn't matter.

Observation 3: Our propositional formula will have one variable per button, indicating whether we press it.

Observation 4: A light that is initially off stays off when an even number of adjacent lights are pressed.

Observation 5: A light that is initially on ends off when an odd number of adjacent lights are pressed.

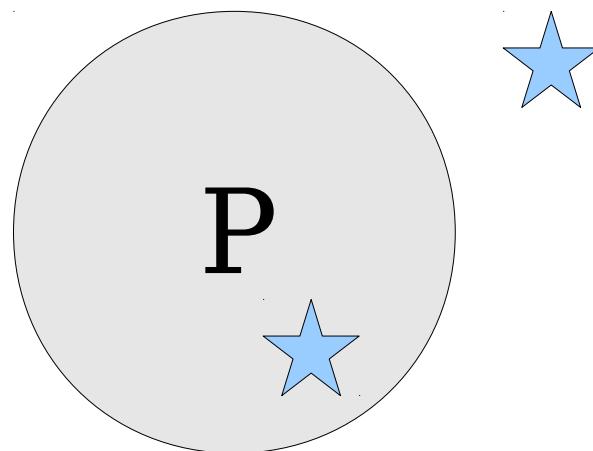
```
bool canTurnLightsOff(LightRing r) {  
    return isSatisfiable(ringToFormula(r));  
}
```

$$LightsOut \leq_p SAT$$

- We say that ***Lights Out is polynomial-time reducible to SAT***
- SAT is at least as hard as Lights Out.

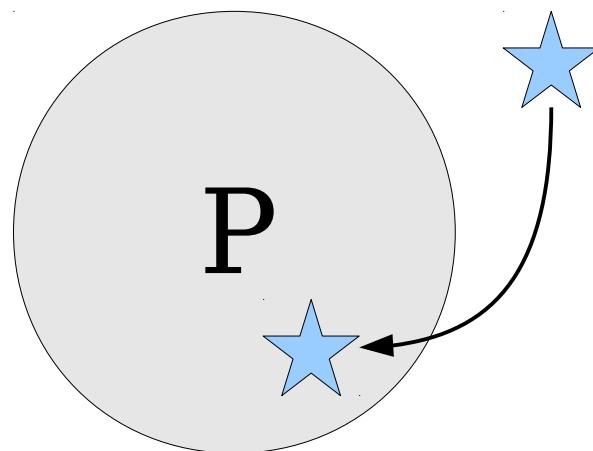
Polynomial-Time Reductions

- If $A \leq_p B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.



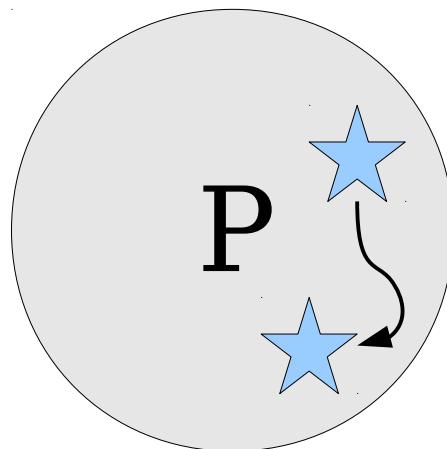
Polynomial-Time Reductions

- If $A \leq_p B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.



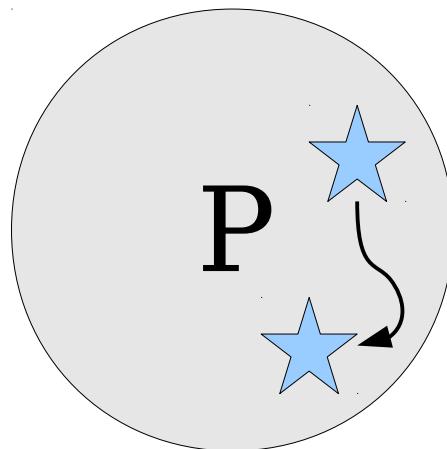
Polynomial-Time Reductions

- If $A \leq_p B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.



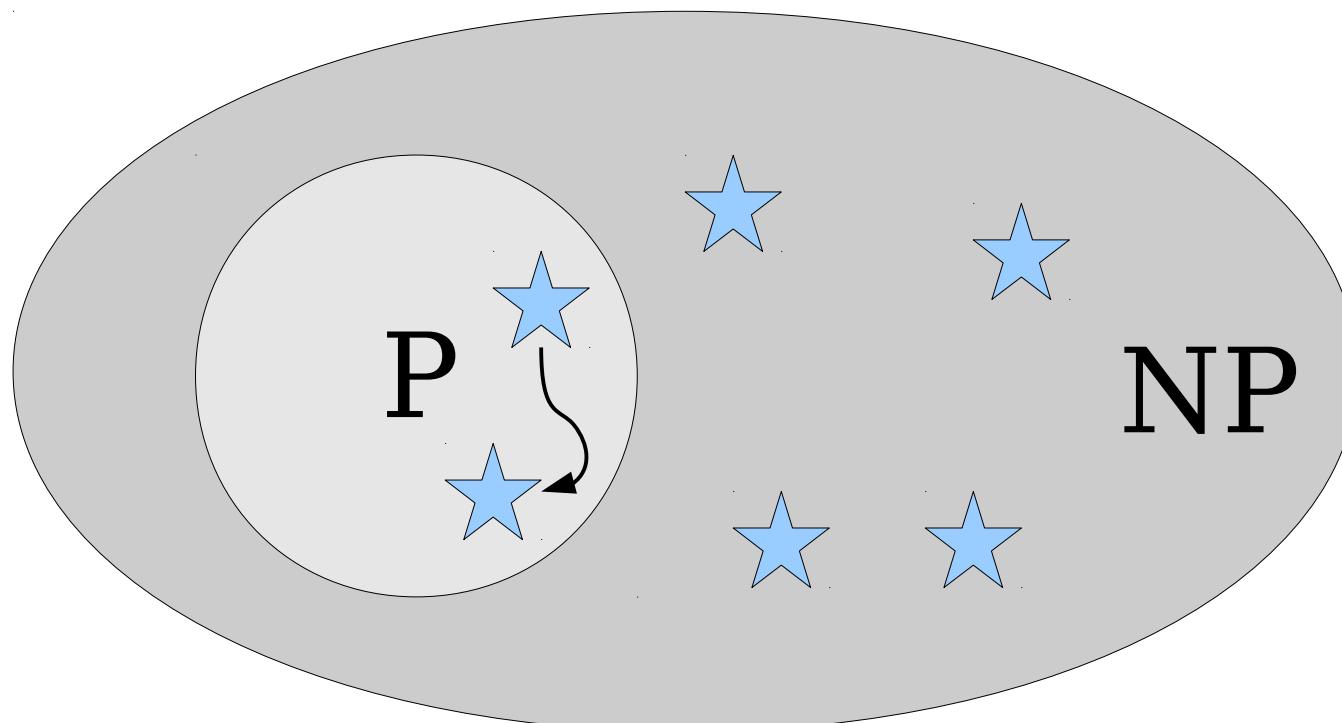
Polynomial-Time Reductions

- If $A \leq_p B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- If $A \leq_p B$ and $B \in \mathbf{NP}$, then $A \in \mathbf{NP}$.



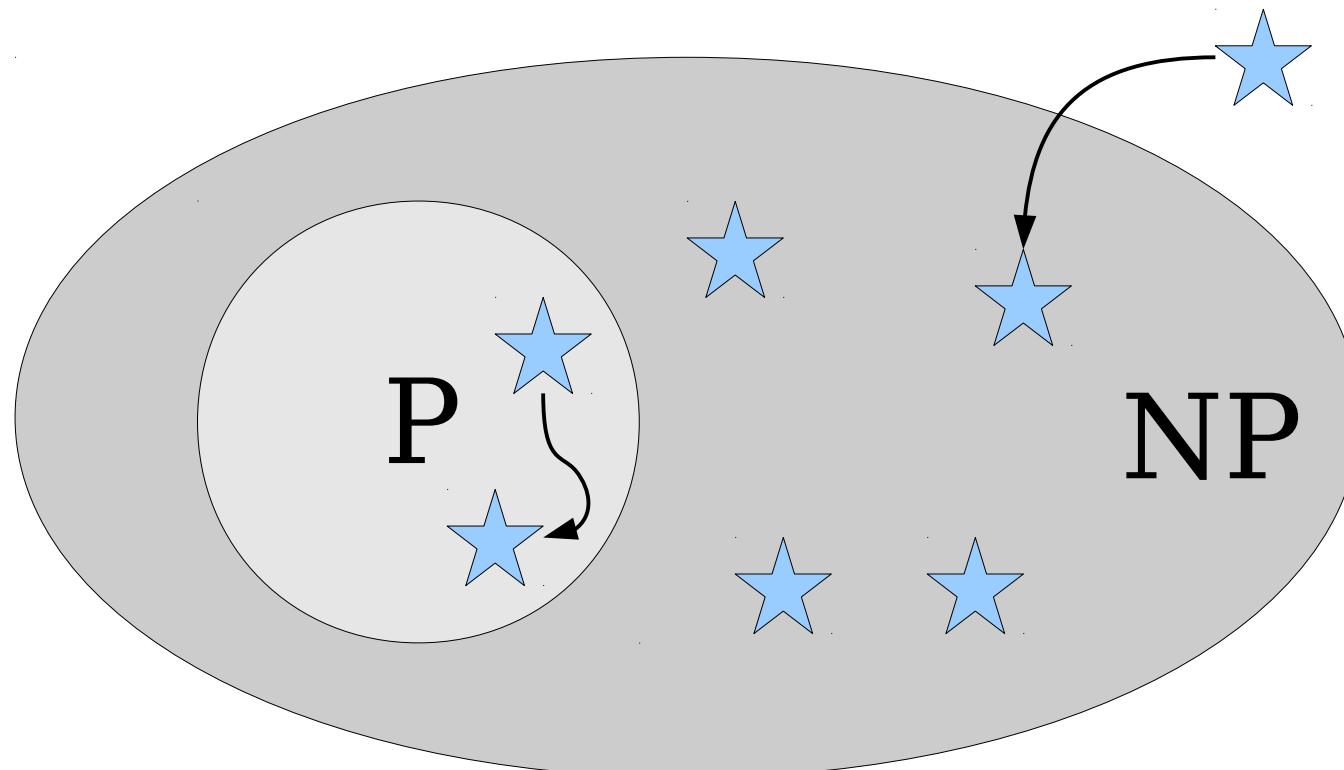
Polynomial-Time Reductions

- If $A \leq_p B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- If $A \leq_p B$ and $B \in \mathbf{NP}$, then $A \in \mathbf{NP}$.



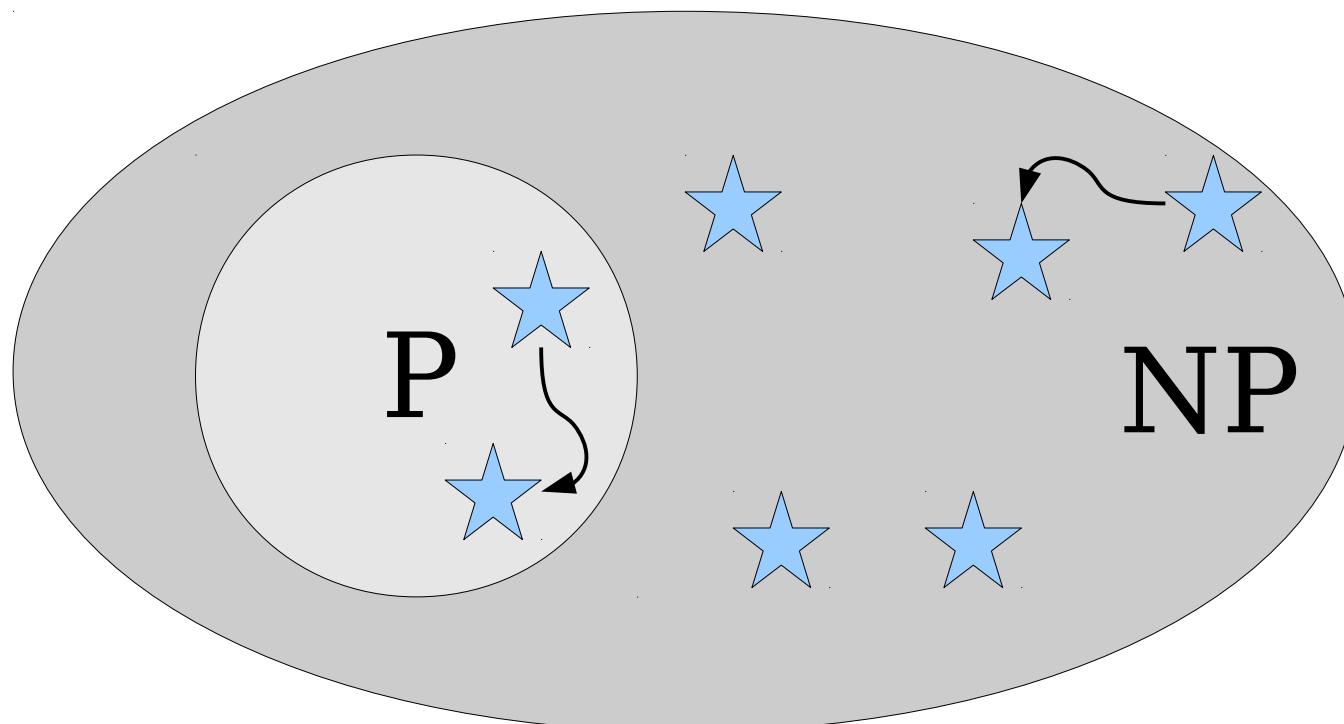
Polynomial-Time Reductions

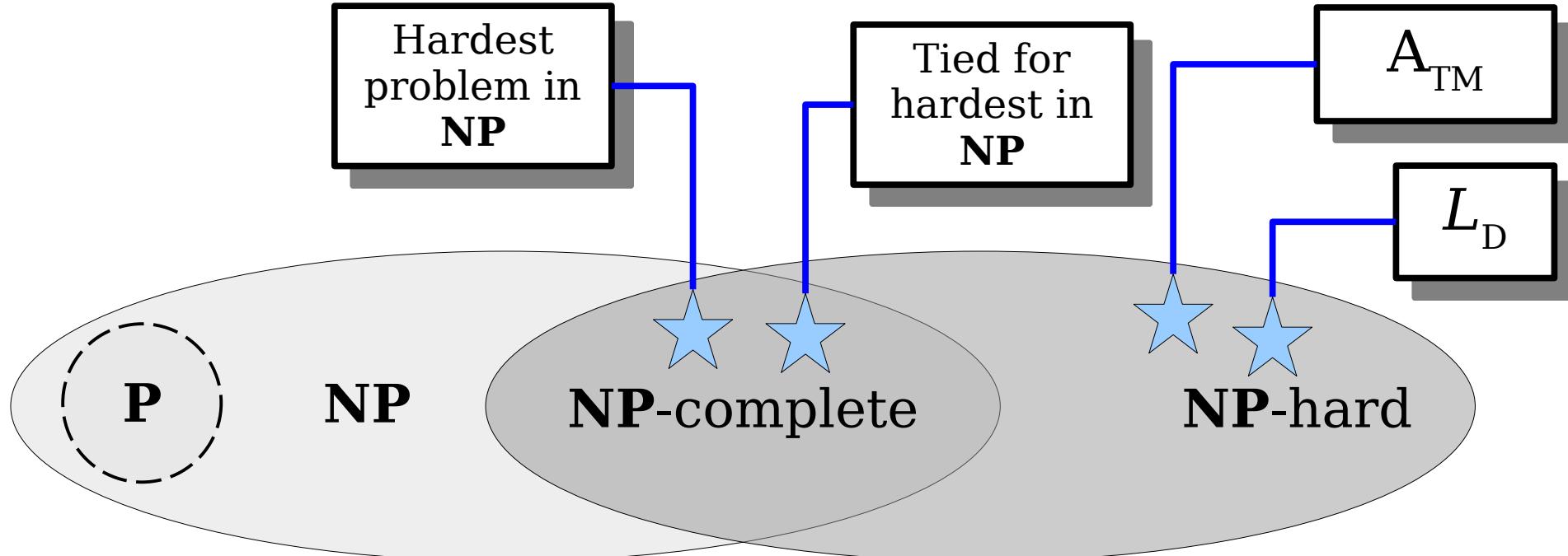
- If $A \leq_p B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- If $A \leq_p B$ and $B \in \mathbf{NP}$, then $A \in \mathbf{NP}$.



Polynomial-Time Reductions

- If $A \leq_p B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- If $A \leq_p B$ and $B \in \mathbf{NP}$, then $A \in \mathbf{NP}$.





For languages A and B , we say $A \leq_p B$ if
 A reduces to B in polynomial time.

(Intuitively: B is at least as hard as A .)

We say that a language L is **NP-hard** if
 $\forall A \in \mathbf{NP}. A \leq_p L$.

(How hard is a problem that's NP-hard?)

We say that a language L is **NP-complete** if
 $L \in \mathbf{NP}$ and L is NP-hard.

(How hard is a problem that's NP-complete?)

Intuition: The **NP**-complete problems are the hardest problems in **NP**.

If we can determine how hard those problems are, it would tell us a lot about the $P \stackrel{?}{=} NP$ question.

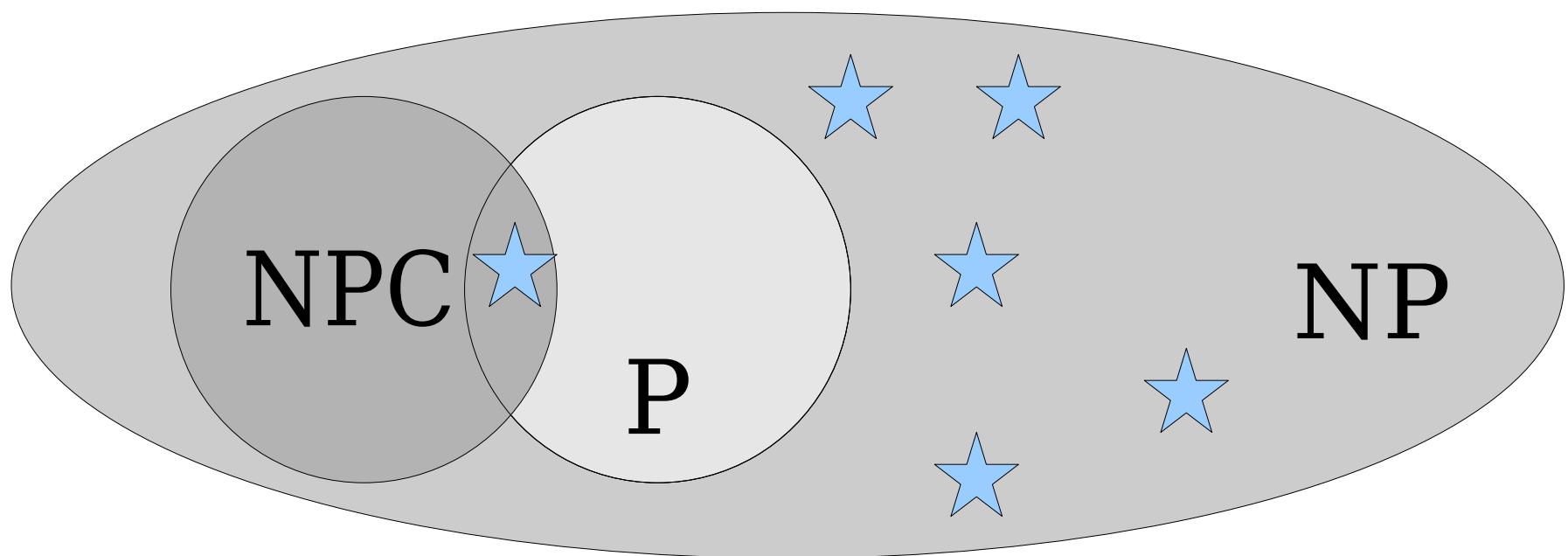
The Tantalizing Truth

Theorem: If *any* **NP**-complete language is in **P**, then **P** = **NP**.

Intuition: This means the hardest problems in **NP** aren't actually that hard. We can solve them in polynomial time. So that means we can solve all problems in **NP** in polynomial time.

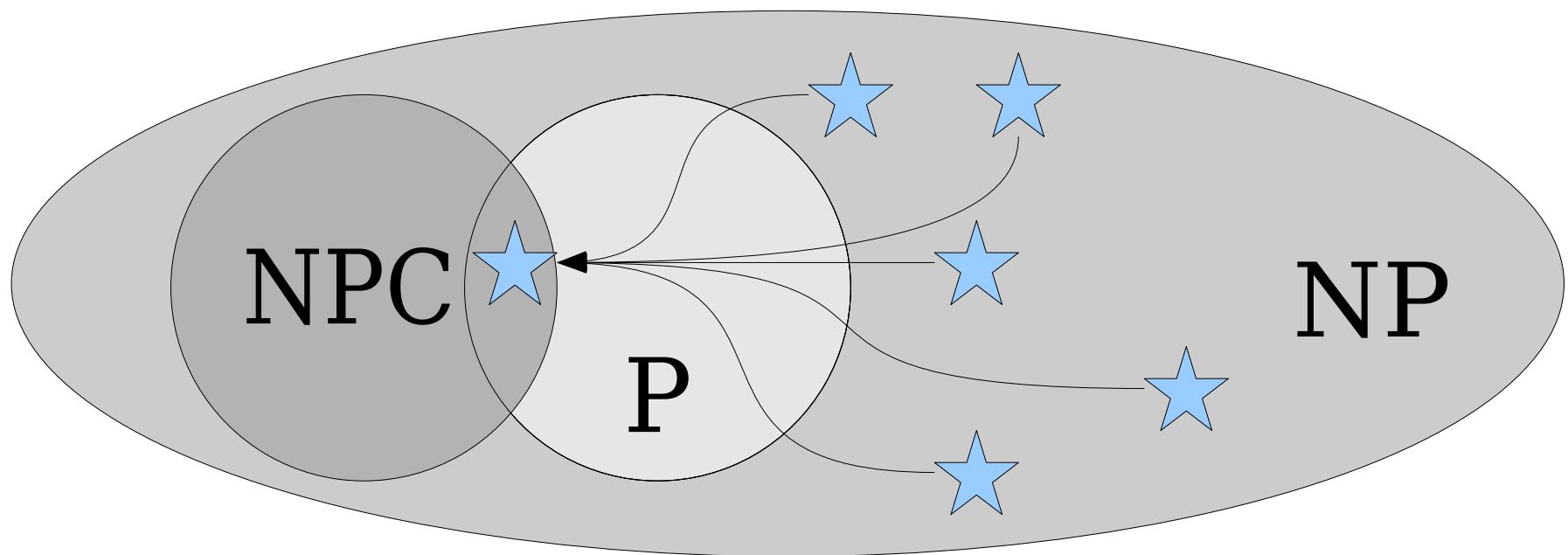
The Tantalizing Truth

Theorem: If *any* **NP**-complete language is in **P**, then **P** = **NP**.



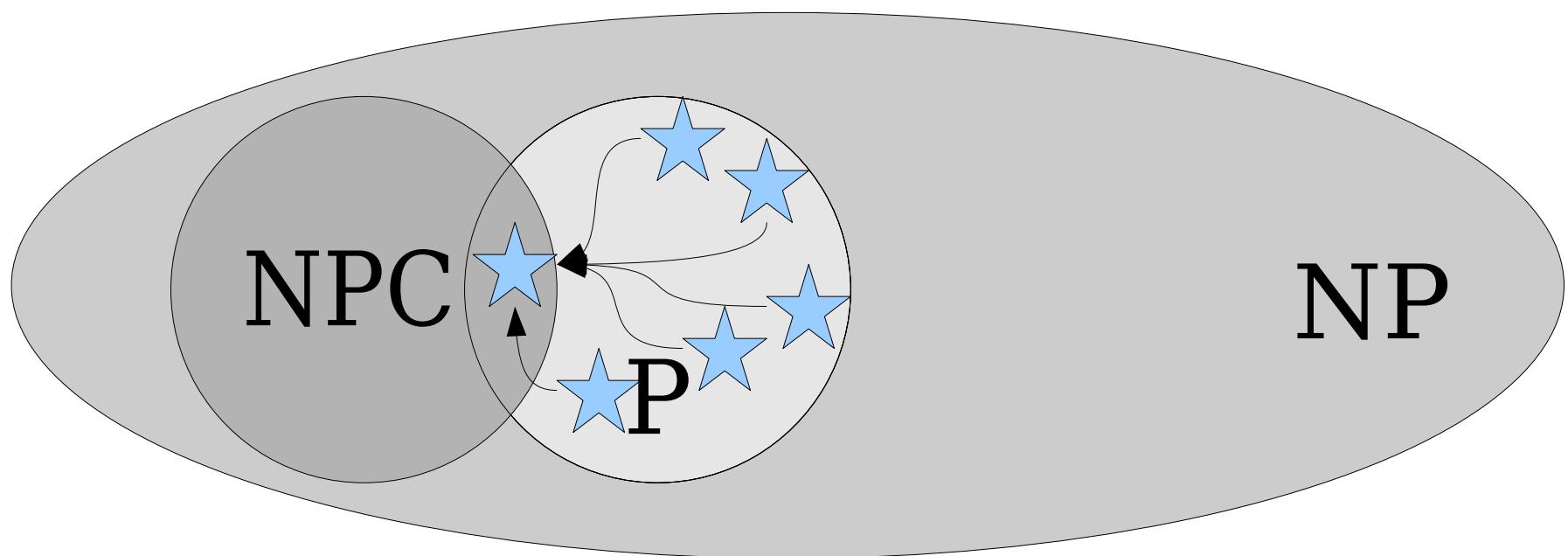
The Tantalizing Truth

Theorem: If *any* **NP**-complete language is in **P**, then **P** = **NP**.



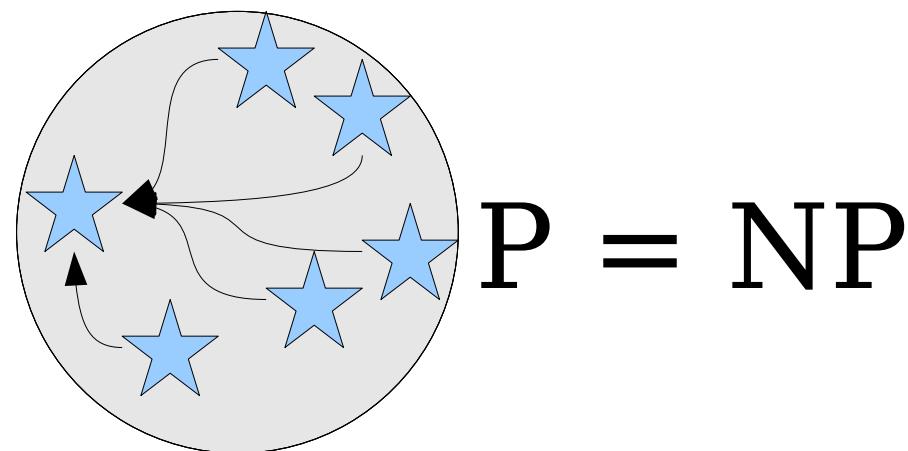
The Tantalizing Truth

Theorem: If *any* **NP**-complete language is in **P**, then **P** = **NP**.



The Tantalizing Truth

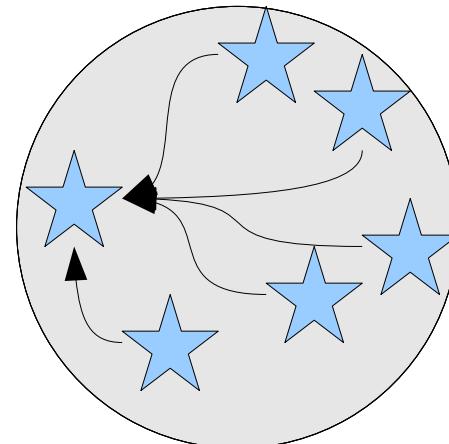
Theorem: If *any* **NP**-complete language is in **P**, then **P** = **NP**.



The Tantalizing Truth

Theorem: If any **NP**-complete language is in **P**, then **P** = **NP**.

Proof: Suppose that L is **NP**-complete and $L \in \mathbf{P}$. Now consider any arbitrary **NP** problem A . Since L is **NP**-complete, we know that $A \leq_p L$. Since $L \in \mathbf{P}$ and $A \leq_p L$, we see that $A \in \mathbf{P}$. Since our choice of A was arbitrary, this means that **NP** $\subseteq \mathbf{P}$, so **P** = **NP**. ■



$$\mathbf{P} = \mathbf{NP}$$

The Tantalizing Truth

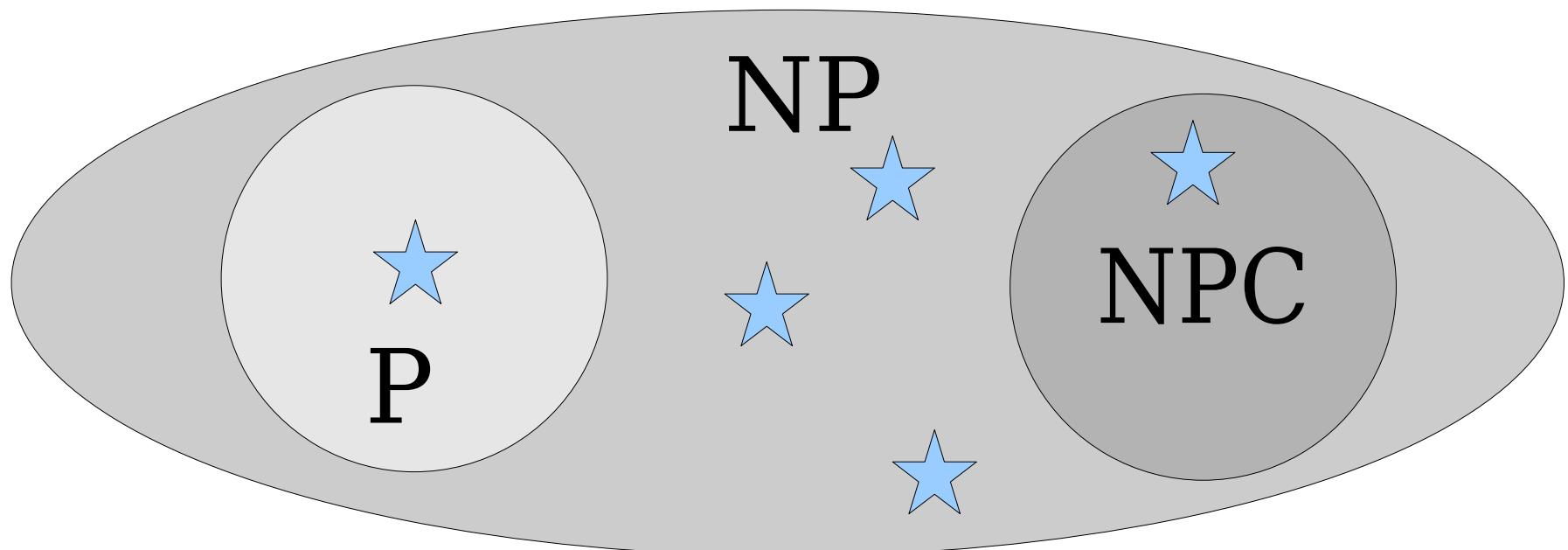
Theorem: If *any* **NP**-complete language is not in **P**, then **P** \neq **NP**.

Intuition: This means the hardest problems in **NP** are so hard that they can't be solved in polynomial time. So the hardest problems in **NP** aren't in **P**, meaning **P** \neq **NP**.

The Tantalizing Truth

Theorem: If any **NP**-complete language is not in **P**, then **P** \neq **NP**.

Proof: Suppose that L is an **NP**-complete language not in **P**. Since L is **NP**-complete, we know that $L \in \mathbf{NP}$. Therefore, we know that $L \in \mathbf{NP}$ and $L \notin \mathbf{P}$, so **P** \neq **NP**. ■



How do we even know NP-complete problems exist in the first place?

Theorem (Cook-Levin): SAT is **NP**-complete.

Proof Idea: To see that **SAT** \in **NP**, show how to make a polynomial-time verifier for it. Key idea: have the certificate be a satisfying assignment.

To show that **SAT** is **NP**-hard, given a polymomial-time verifier V for an arbitrary **NP** language L , for any string w you can construct a polynomially-sized formula $\varphi(w)$ that says “there is a certificate c where V accepts (w, c) .” This formula is satisfiable if and only if $w \in L$, so deciding whether the formula is satisfiable decides whether w is in L . ■

Proof: Take CS154!

Why All This Matters

- Resolving $P \stackrel{?}{=} NP$ is equivalent to just figuring out how hard SAT is.
$$SAT \in P \leftrightarrow P = NP$$
- We've turned a huge, abstract, theoretical problem about solving problems versus checking solutions into the concrete task of seeing how hard one problem is.
- You can get a sense for how little we know about algorithms and computation given that we can't yet answer this question!

Why This Matters

- The following problems are known to be efficiently verifiable, but have no known efficient solutions:
 - Determining whether an electrical grid can be built to link up some number of houses for some price (Steiner tree problem).
 - Determining whether a simple DNA strand exists that multiple gene sequences could be a part of (shortest common supersequence).
 - Determining the best way to assign hardware resources in a compiler (optimal register allocation).
 - Determining the best way to distribute tasks to multiple workers to minimize completion time (job scheduling).
 - ***And many more.***
- If $\mathbf{P} = \mathbf{NP}$, ***all*** of these problems have efficient solutions.
- If $\mathbf{P} \neq \mathbf{NP}$, ***none*** of these problems have efficient solutions.

Why This Matters

- If $\mathbf{P} = \mathbf{NP}$:
 - A huge number of seemingly difficult problems could be solved efficiently.
 - Our capacity to solve many problems will scale well with the size of the problems we want to solve.
- If $\mathbf{P} \neq \mathbf{NP}$:
 - Enormous computational power would be required to solve many seemingly easy tasks.
 - Our capacity to solve problems will fail to keep up with our curiosity.

Sample NP-Hard Problems

- **Computational biology:** Given a set of genomes, what is the most probable evolutionary tree that would give rise to those genomes? (*Maximum parsimony problem*)
- **Game theory:** Given an arbitrary perfect-information, finite, two-player game, who wins? (*Generalized geography problem*)
- **Operations research:** Given a set of jobs and workers who can perform those tasks in parallel, can you complete all the jobs within some time bound? (*Job scheduling problem*)
- **Machine learning:** Given a set of data, find the simplest way of modeling the statistical patterns in that data. (*Bayesian network inference problem*)
- **Medicine:** Given a group of people who need kidneys and a group of kidney donors, find the maximum number of people who can receive transplants. (*Cycle cover problem*)
- **Systems:** Given a set of processes and a number of processors, find the optimal way to assign those tasks so that they complete as soon as possible. (*Processor scheduling problem*)

Why All This Matters

- You will almost certainly encounter **NP**-hard problems in practice – they're everywhere!
- If a problem is **NP**-hard, then there is no known algorithm for that problem that
 - is efficient on all inputs,
 - always gives back the right answer, and
 - runs deterministically.
- ***Useful intuition:*** If you need to solve an **NP**-hard problem, you will either need to settle for an approximate answer, an answer that's likely but not necessarily right, or have to work on really small inputs.